Suppr超能文献

一种用于工业物联网(IIoT)系统安全与隐私的人工智能轻量级区块链安全模型。

An artificial intelligence lightweight blockchain security model for security and privacy in IIoT systems.

作者信息

Selvarajan Shitharth, Srivastava Gautam, Khadidos Alaa O, Khadidos Adil O, Baza Mohamed, Alshehri Ali, Lin Jerry Chun-Wei

机构信息

Department of Computer Science, Kebri Dehar University, Kebri Dehar, Ethiopia.

Department of Math and Computer Science, Brandon University, R7A 6A9 Brandon, Canada.

出版信息

J Cloud Comput (Heidelb). 2023;12(1):38. doi: 10.1186/s13677-023-00412-y. Epub 2023 Mar 16.

Abstract

The Industrial Internet of Things (IIoT) promises to deliver innovative business models across multiple domains by providing ubiquitous connectivity, intelligent data, predictive analytics, and decision-making systems for improved market performance. However, traditional IIoT architectures are highly susceptible to many security vulnerabilities and network intrusions, which bring challenges such as lack of privacy, integrity, trust, and centralization. This research aims to implement an Artificial Intelligence-based Lightweight Blockchain Security Model (AILBSM) to ensure privacy and security of IIoT systems. This novel model is meant to address issues that can occur with security and privacy when dealing with Cloud-based IIoT systems that handle data in the Cloud or on the Edge of Networks (on-device). The novel contribution of this paper is that it combines the advantages of both lightweight blockchain and Convivial Optimized Sprinter Neural Network (COSNN) based AI mechanisms with simplified and improved security operations. Here, the significant impact of attacks is reduced by transforming features into encoded data using an Authentic Intrinsic Analysis (AIA) model. Extensive experiments are conducted to validate this system using various attack datasets. In addition, the results of privacy protection and AI mechanisms are evaluated separately and compared using various indicators. By using the proposed AILBSM framework, the execution time is minimized to 0.6 seconds, the overall classification accuracy is improved to 99.8%, and detection performance is increased to 99.7%. Due to the inclusion of auto-encoder based transformation and blockchain authentication, the anomaly detection performance of the proposed model is highly improved, when compared to other techniques.

摘要

工业物联网(IIoT)有望通过提供无处不在的连接、智能数据、预测分析和决策系统来改善市场表现,从而在多个领域实现创新的商业模式。然而,传统的工业物联网架构极易受到许多安全漏洞和网络入侵的影响,这带来了诸如缺乏隐私、完整性、信任和集中化等挑战。本研究旨在实现一种基于人工智能的轻量级区块链安全模型(AILBSM),以确保工业物联网系统的隐私和安全。这种新颖的模型旨在解决在处理基于云的工业物联网系统时可能出现的安全和隐私问题,这些系统在云端或网络边缘(设备上)处理数据。本文的新颖贡献在于,它将轻量级区块链和基于友好优化短跑者神经网络(COSNN)的人工智能机制的优势与简化和改进的安全操作相结合。在这里,通过使用真实内在分析(AIA)模型将特征转换为编码数据,可减少攻击的重大影响。使用各种攻击数据集进行了广泛的实验来验证该系统。此外,分别评估隐私保护和人工智能机制的结果,并使用各种指标进行比较。通过使用所提出的AILBSM框架,执行时间最小化至0.6秒,整体分类准确率提高到99.8%,检测性能提高到99.7%。与其他技术相比,由于包含基于自动编码器的转换和区块链认证,所提出模型的异常检测性能得到了极大提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de39/10017665/86c2056e6f13/13677_2023_412_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验