Suppr超能文献

梯度与分割在预测行为功能连接中的比较。

Comparison between gradients and parcellations for functional connectivity prediction of behavior.

机构信息

Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health and Institute for Digital Medicine (WisDM), National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore.

Department of Electrical and Computer Engineering, National University of Singapore, Singapore.

出版信息

Neuroimage. 2023 Jun;273:120044. doi: 10.1016/j.neuroimage.2023.120044. Epub 2023 Mar 20.

Abstract

Resting-state functional connectivity (RSFC) is widely used to predict behavioral measures. To predict behavioral measures, representing RSFC with parcellations and gradients are the two most popular approaches. Here, we compare parcellation and gradient approaches for RSFC-based prediction of a broad range of behavioral measures in the Human Connectome Project (HCP) and Adolescent Brain Cognitive Development (ABCD) datasets. Among the parcellation approaches, we consider group-average "hard" parcellations (Schaefer et al., 2018), individual-specific "hard" parcellations (Kong et al., 2021a), and an individual-specific "soft" parcellation (spatial independent component analysis with dual regression; Beckmann et al., 2009). For gradient approaches, we consider the well-known principal gradients (Margulies et al., 2016) and the local gradient approach that detects local RSFC changes (Laumann et al., 2015). Across two regression algorithms, individual-specific hard-parcellation performs the best in the HCP dataset, while the principal gradients, spatial independent component analysis and group-average "hard" parcellations exhibit similar performance. On the other hand, principal gradients and all parcellation approaches perform similarly in the ABCD dataset. Across both datasets, local gradients perform the worst. Finally, we find that the principal gradient approach requires at least 40 to 60 gradients to perform as well as parcellation approaches. While most principal gradient studies utilize a single gradient, our results suggest that incorporating higher order gradients can provide significant behaviorally relevant information. Future work will consider the inclusion of additional parcellation and gradient approaches for comparison.

摘要

静息态功能连接 (RSFC) 被广泛用于预测行为测量。为了预测行为测量,用分区和梯度来表示 RSFC 是两种最流行的方法。在这里,我们比较了分区和梯度方法在人类连接组计划 (HCP) 和青少年大脑认知发展 (ABCD) 数据集上对广泛的行为测量的基于 RSFC 的预测。在分区方法中,我们考虑了组平均的“硬”分区 (Schaefer 等人,2018)、个体特定的“硬”分区 (Kong 等人,2021a) 和个体特定的“软”分区 (具有双回归的空间独立成分分析; Beckmann 等人,2009)。对于梯度方法,我们考虑了著名的主梯度 (Margulies 等人,2016) 和检测局部 RSFC 变化的局部梯度方法 (Laumann 等人,2015)。在两种回归算法中,个体特定的硬分区在 HCP 数据集中表现最好,而主梯度、空间独立成分分析和组平均“硬”分区表现相似。另一方面,主梯度和所有分区方法在 ABCD 数据集中表现相似。在两个数据集上,局部梯度的表现最差。最后,我们发现主梯度方法至少需要 40 到 60 个梯度才能达到与分区方法相似的性能。虽然大多数主梯度研究只使用一个梯度,但我们的结果表明,纳入更高阶的梯度可以提供与行为相关的重要信息。未来的工作将考虑纳入更多的分区和梯度方法进行比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d06/10192836/577a79830a45/nihms-1896481-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验