College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, Jiangsu, China.
College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China.
Neuroimage. 2024 Jun;293:120616. doi: 10.1016/j.neuroimage.2024.120616. Epub 2024 Apr 30.
Cortical parcellation plays a pivotal role in elucidating the brain organization. Despite the growing efforts to develop parcellation algorithms using functional magnetic resonance imaging, achieving a balance between intra-individual specificity and inter-individual consistency proves challenging, making the generation of high-quality, subject-consistent cortical parcellations particularly elusive. To solve this problem, our paper proposes a fully automated individual cortical parcellation method based on consensus graph representation learning. The method integrates spectral embedding with low-rank tensor learning into a unified optimization model, which uses group-common connectivity patterns captured by low-rank tensor learning to optimize subjects' functional networks. This not only ensures consistency in brain representations across different subjects but also enhances the quality of each subject's representation matrix by eliminating spurious connections. More importantly, it achieves an adaptive balance between intra-individual specificity and inter-individual consistency during this process. Experiments conducted on a test-retest dataset from the Human Connectome Project (HCP) demonstrate that our method outperforms existing methods in terms of reproducibility, functional homogeneity, and alignment with task activation. Extensive network-based comparisons on the HCP S900 dataset reveal that the functional network derived from our cortical parcellation method exhibits greater capabilities in gender identification and behavior prediction than other approaches.
皮质分割在阐明大脑组织方面起着关键作用。尽管越来越多地努力使用功能磁共振成像开发分割算法,但在个体内特异性和个体间一致性之间取得平衡仍然具有挑战性,因此很难生成高质量、个体一致的皮质分割。为了解决这个问题,我们的论文提出了一种基于共识图表示学习的全自动个体皮质分割方法。该方法将谱嵌入与低秩张量学习集成到一个统一的优化模型中,该模型使用低秩张量学习捕获的组常见连通模式来优化受试者的功能网络。这不仅确保了不同受试者之间大脑表示的一致性,而且通过消除虚假连接来提高每个受试者表示矩阵的质量。更重要的是,它在这个过程中实现了个体内特异性和个体间一致性之间的自适应平衡。在人类连接组计划(HCP)的测试-重测数据集上进行的实验表明,我们的方法在可重复性、功能同质性以及与任务激活的一致性方面优于现有方法。在 HCP S900 数据集上进行的广泛的基于网络的比较表明,我们的皮质分割方法生成的功能网络在性别识别和行为预测方面比其他方法具有更大的能力。