Suppr超能文献

迈向社会可控性的神经计算解释:从模型到心理健康。

Towards a neurocomputational account of social controllability: From models to mental health.

机构信息

Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.

Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.

出版信息

Neurosci Biobehav Rev. 2023 May;148:105139. doi: 10.1016/j.neubiorev.2023.105139. Epub 2023 Mar 20.

Abstract

Controllability, or the influence one has over their surroundings, is crucial for decision-making and mental health. Traditionally, controllability is operationalized in sensorimotor terms as one's ability to exercise their actions to achieve an intended outcome (also termed "agency"). However, recent social neuroscience research suggests that humans also assess if and how they can exert influence over other people (i.e., their actions, outcomes, beliefs) to achieve desired outcomes ("social controllability"). In this review, we will synthesize empirical findings and neurocomputational frameworks related to social controllability. We first introduce the concepts of contextual and perceived controllability and their respective relevance for decision-making. Then, we outline neurocomputational frameworks that can be used to model social controllability, with a focus on behavioral economic paradigms and reinforcement learning approaches. Finally, we discuss the implications of social controllability for computational psychiatry research, using delusion and obsession-compulsion as examples. Taken together, we propose that social controllability could be a key area of investigation in future social neuroscience and computational psychiatry research.

摘要

可控性,或一个人对其周围环境的影响,对决策和心理健康至关重要。传统上,可控性在感觉运动术语中被操作化为一个人行使其行动以实现预期结果的能力(也称为“代理”)。然而,最近的社会神经科学研究表明,人类还评估他们是否以及如何能够对其他人施加影响(即,他们的行动、结果、信念)以实现期望的结果(“社会可控性”)。在这篇综述中,我们将综合与社会可控性相关的实证发现和神经计算框架。我们首先介绍语境可控性和感知可控性的概念及其对决策的各自相关性。然后,我们概述了可用于建模社会可控性的神经计算框架,重点是行为经济学范式和强化学习方法。最后,我们讨论了社会可控性对计算精神病学研究的意义,以妄想和强迫-冲动为例。总之,我们提出社会可控性可能是未来社会神经科学和计算精神病学研究的一个关键领域。

相似文献

4
Computational psychiatry.计算精神病学。
Trends Cogn Sci. 2012 Jan;16(1):72-80. doi: 10.1016/j.tics.2011.11.018. Epub 2011 Dec 14.
10
Neurocomputational mechanism of controllability inference under a multi-agent setting.多主体情境下可控性推断的神经计算机制。
PLoS Comput Biol. 2021 Nov 9;17(11):e1009549. doi: 10.1371/journal.pcbi.1009549. eCollection 2021 Nov.

引用本文的文献

7
The Human Affectome.人类情感组
Neurosci Biobehav Rev. 2024 Mar;158:105450. doi: 10.1016/j.neubiorev.2023.105450. Epub 2023 Nov 3.

本文引用的文献

2
How games can make behavioural science better.游戏如何能让行为科学变得更好。
Nature. 2023 Jan;613(7944):433-436. doi: 10.1038/d41586-023-00065-6.
4
The fear of losing control.对失控的恐惧。
J Behav Ther Exp Psychiatry. 2022 Dec;77:101768. doi: 10.1016/j.jbtep.2022.101768. Epub 2022 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验