Ren Hengqian, Dommaraju Shravan R, Huang Chunshuai, Cui Haiyang, Pan Yuwei, Nesic Marko, Zhu Lingyang, Sarlah David, Mitchell Douglas A, Zhao Huimin
Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
bioRxiv. 2023 Mar 8:2023.03.08.531785. doi: 10.1101/2023.03.08.531785.
The era of inexpensive genome sequencing and improved bioinformatics tools has reenergized the study of natural products, including the ribosomally synthesized and post-translationally modified peptides (RiPPs). In recent years, RiPP discovery has challenged preconceptions about the scope of post-translational modification chemistry, but genome mining of new RiPP classes remains an unsolved challenge. Here, we report a RiPP class defined by an unusual ( )- , -dimethyl-1,2-propanediamine (Dmp)-modified -terminus, which we term the daptides. Nearly 500 daptide biosynthetic gene clusters (BGCs) were identified by analyzing the RiPP Recognition Element (RRE), a common substrate-binding domain found in half of prokaryotic RiPP classes. A representative daptide BGC from DSM 15019 was selected for experimental characterization. Derived from a -terminal threonine residue, the class-defining Dmp is installed over three steps by an oxidative decarboxylase, aminotransferase, and methyltransferase. Daptides uniquely harbor two positively charged termini, and thus we suspect this modification could aid in membrane targeting, as corroborated by hemolysis assays. Our studies further show that the oxidative decarboxylation step requires a functionally unannotated accessory protein. Fused to the -terminus of the accessory protein is an RRE domain, which delivers the unmodified substrate peptide to the oxidative decarboxylase. This discovery of a class-defining post-translational modification in RiPPs may serve as a prototype for unveiling additional RiPP classes through genome mining.
廉价基因组测序和改良生物信息学工具的时代为天然产物的研究注入了新活力,其中包括核糖体合成及翻译后修饰肽(RiPPs)。近年来,RiPP的发现挑战了人们对翻译后修饰化学范围的先入之见,但新型RiPP类别的基因组挖掘仍是一项尚未解决的挑战。在此,我们报告了一类由不寻常的( )- , -二甲基-1,2-丙二胺(Dmp)修饰的 -末端定义的RiPP,我们将其命名为双肽菌素。通过分析RiPP识别元件(RRE),在近一半的原核RiPP类别中发现的一种常见底物结合结构域,鉴定出了近500个双肽菌素生物合成基因簇(BGCs)。从DSM 15019中选取了一个具有代表性的双肽菌素BGC进行实验表征。作为该类别定义的Dmp源自 -末端苏氨酸残基,通过氧化脱羧酶、转氨酶和甲基转移酶分三步安装。双肽菌素独特地具有两个带正电荷的末端,因此我们怀疑这种修饰可能有助于膜靶向,溶血试验证实了这一点。我们的研究进一步表明,氧化脱羧步骤需要一种功能未注释的辅助蛋白。辅助蛋白的 -末端融合有一个RRE结构域,它将未修饰的底物肽传递给氧化脱羧酶。RiPPs中这种类别定义的翻译后修饰的发现可能为通过基因组挖掘揭示更多RiPP类别提供一个范例。