Suppr超能文献

基于摩擦纳米发电机和机器学习的语音与手势双重模式人机交互。

Human-Machine Interaction via Dual Modes of Voice and Gesture Enabled by Triboelectric Nanogenerator and Machine Learning.

机构信息

College of Mathematics and Physics, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China.

Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, PR China.

出版信息

ACS Appl Mater Interfaces. 2023 Apr 5;15(13):17009-17018. doi: 10.1021/acsami.3c00566. Epub 2023 Mar 22.

Abstract

With the development of science and technology, human-machine interaction has brought great benefits to the society. Here, we design a voice and gesture signal translator (VGST), which can translate natural actions into electrical signals and realize efficient communication in human-machine interface. By spraying silk protein on the copper of the device, the VGST can achieve improved output and a wide frequency response of 20-2000 Hz with a high sensitivity of 167 mV/dB, and the resolution of frequency detection can reach 0.1 Hz. By designing its internal structure, its resonant frequency and output voltage can be adjusted. The VGST can be used as a high-fidelity platform to effectively recover recorded music and can also be combined with machine learning algorithms to realize the function of speech recognition with a high accuracy rate of 97%. It also has good antinoise performance to recognize speech correctly even in noisy environments. Meanwhile, in gesture recognition, the triboelectric translator is able to recognize simple hand gestures and to judge the distance between hand and the VGST based on the principle of electrostatic induction. This work demonstrates that triboelectric nanogenerator (TENG) technology can have great application prospects and significant advantages in human-machine interaction and high-fidelity platforms.

摘要

随着科学技术的发展,人机交互给社会带来了巨大的好处。在这里,我们设计了一种语音和手势信号翻译器(VGST),它可以将自然动作转化为电信号,实现人机界面的高效通信。通过在器件的铜上喷涂丝蛋白,VGST 可以实现改进的输出和 20-2000Hz 的宽频率响应,灵敏度高达 167mV/dB,频率检测分辨率可达 0.1Hz。通过设计其内部结构,可以调整其谐振频率和输出电压。VGST 可以用作高保真平台,有效地恢复录制的音乐,也可以与机器学习算法相结合,实现准确率高达 97%的语音识别功能。它还具有良好的抗噪声性能,即使在嘈杂的环境中也能正确识别语音。同时,在手势识别中,基于静电感应原理,摩擦电传感器可以识别简单的手势,并判断手与 VGST 之间的距离。这项工作表明,摩擦纳米发电机(TENG)技术在人机交互和高保真平台方面具有广阔的应用前景和显著的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/808e/10080540/b64f7bffb008/am3c00566_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验