Suppr超能文献

IP4GS:将基因组选择分析带给育种者。

IP4GS: Bringing genomic selection analysis to breeders.

作者信息

Li Tong, Jiang Shan, Fu Ran, Wang Xiangfeng, Cheng Qian, Jiang Shuqin

机构信息

Frontiers Science Center for Molecular Design Breeding, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China.

出版信息

Front Plant Sci. 2023 Mar 6;14:1131493. doi: 10.3389/fpls.2023.1131493. eCollection 2023.

Abstract

Genomic selection (GS), a strategy to use genotypes to predict phenotypes statistical or machine learning models, has become a routine practice in plant breeding programs. GS can speed up the genetic gain by reducing phenotyping costs and/or shortening the breeding cycles. GS analysis is complicated involving data clean up and formatting, training and test population analysis, model selection and evaluation, and parameter optimization. In addition, GS analysis also requires some programming skills and knowledge of statistical modeling. Thus, we need a more practical GS tools for breeders. To alleviate this difficulty, we developed the web-based platform IP4GS (https://ngdc.cncb.ac.cn/ip4gs/), which offers a user-friendly interface to perform GS analysis simply through point-and-click actions. IP4GS currently includes seven commonly used models, eleven evaluation metrics, and visualization modules, offering great convenience for plant breeders with limited bioinformatics knowledge to apply GS analysis.

摘要

基因组选择(GS)是一种利用基因型通过统计或机器学习模型预测表型的策略,已成为植物育种计划中的常规做法。GS可以通过降低表型分析成本和/或缩短育种周期来加快遗传增益。GS分析很复杂,涉及数据清理和格式化、训练和测试群体分析、模型选择和评估以及参数优化。此外,GS分析还需要一些编程技能和统计建模知识。因此,我们需要为育种者提供更实用的GS工具。为了缓解这一困难,我们开发了基于网络的平台IP4GS(https://ngdc.cncb.ac.cn/ip4gs/),该平台提供了一个用户友好的界面,只需通过点击操作即可进行GS分析。IP4GS目前包括七种常用模型、十一种评估指标和可视化模块,为生物信息学知识有限的植物育种者应用GS分析提供了极大的便利。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验