Suppr超能文献

IP4GS:将基因组选择分析带给育种者。

IP4GS: Bringing genomic selection analysis to breeders.

作者信息

Li Tong, Jiang Shan, Fu Ran, Wang Xiangfeng, Cheng Qian, Jiang Shuqin

机构信息

Frontiers Science Center for Molecular Design Breeding, College of Agriculture and Biotechnology, China Agricultural University, Beijing, China.

出版信息

Front Plant Sci. 2023 Mar 6;14:1131493. doi: 10.3389/fpls.2023.1131493. eCollection 2023.

Abstract

Genomic selection (GS), a strategy to use genotypes to predict phenotypes statistical or machine learning models, has become a routine practice in plant breeding programs. GS can speed up the genetic gain by reducing phenotyping costs and/or shortening the breeding cycles. GS analysis is complicated involving data clean up and formatting, training and test population analysis, model selection and evaluation, and parameter optimization. In addition, GS analysis also requires some programming skills and knowledge of statistical modeling. Thus, we need a more practical GS tools for breeders. To alleviate this difficulty, we developed the web-based platform IP4GS (https://ngdc.cncb.ac.cn/ip4gs/), which offers a user-friendly interface to perform GS analysis simply through point-and-click actions. IP4GS currently includes seven commonly used models, eleven evaluation metrics, and visualization modules, offering great convenience for plant breeders with limited bioinformatics knowledge to apply GS analysis.

摘要

基因组选择(GS)是一种利用基因型通过统计或机器学习模型预测表型的策略,已成为植物育种计划中的常规做法。GS可以通过降低表型分析成本和/或缩短育种周期来加快遗传增益。GS分析很复杂,涉及数据清理和格式化、训练和测试群体分析、模型选择和评估以及参数优化。此外,GS分析还需要一些编程技能和统计建模知识。因此,我们需要为育种者提供更实用的GS工具。为了缓解这一困难,我们开发了基于网络的平台IP4GS(https://ngdc.cncb.ac.cn/ip4gs/),该平台提供了一个用户友好的界面,只需通过点击操作即可进行GS分析。IP4GS目前包括七种常用模型、十一种评估指标和可视化模块,为生物信息学知识有限的植物育种者应用GS分析提供了极大的便利。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验