Suppr超能文献

仿生酶级联结构色水凝胶微球用于糖尿病伤口愈合管理。

Biomimetic Enzyme Cascade Structural Color Hydrogel Microparticles for Diabetic Wound Healing Management.

机构信息

Department of Otolaryngology Head and Neck Surgery, Institute of Translational Medicine, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.

Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, P. R. China.

出版信息

Adv Sci (Weinh). 2023 May;10(14):e2206900. doi: 10.1002/advs.202206900. Epub 2023 Mar 22.

Abstract

Hard-healing diabetic wound brings burgeoning physical and mental burdens to patients. Current treatment strategies tend to achieve multistage promotion and real-time reporting to facilitate wound management. Herein, a biomimetic enzyme cascade inverse opal microparticles system for wound healing, which is intergated with glucose oxidase (GOD) and copper peroxide (CP). Such microparticles are composed of biofriendly hyaluronic acid methacryloyl (HAMA) and pH-responsive acrylic acid (AA), which provided abundant binding sites and spaces for chemical immobilizing and physical doping of enzymes and metal bioinorganics. When the cascade catalytic system is applied on wound sites, hyperglycemia environment would serve as a hydrogen peroxide (H O ) generator through GOD catalysis, while acidic environment triggers the decomposition of CP, further catalyzing H O to generate reactive oxygen species (ROS). Additionally, the distinctive structural color of the microparticles can visually reflect the wound pH and intelligently estimate the healing state. It is demonstrated that such microparticle systems exhibit excellent broad-spectrum antibacterial and angiogenesis-promoting properties, as well as significant real-time reporting ability for wound healing. These features indicate that enzyme cascade structural color microparticles possess valuable potential in wound healing and related field.

摘要

难愈性糖尿病伤口给患者带来日益沉重的身心负担。目前的治疗策略往往倾向于实现多阶段促进和实时报告,以促进伤口管理。在此,我们提出了一种仿生酶级联反蛋白石微球系统用于伤口愈合,该系统集成了葡萄糖氧化酶(GOD)和过氧化铜(CP)。这些微球由生物友好的透明质酸甲基丙烯酰(HAMA)和 pH 响应性丙烯酸(AA)组成,为化学固定化和物理掺杂酶和金属生物无机材料提供了丰富的结合位点和空间。当级联催化系统应用于伤口部位时,高血糖环境将通过 GOD 催化作为过氧化氢(H2O2)发生器,而酸性环境会触发 CP 的分解,进一步催化 H2O2 生成活性氧(ROS)。此外,微球的独特结构颜色可以直观地反映伤口 pH 值,并智能地估计愈合状态。研究表明,这种微球系统具有优异的广谱抗菌和促进血管生成特性,以及对伤口愈合的显著实时报告能力。这些特点表明,酶级联结构色微球在伤口愈合及相关领域具有重要的潜在应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c57/10190660/5073494446cb/ADVS-10-2206900-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验