Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA; Department of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
Water Res. 2023 May 15;235:119859. doi: 10.1016/j.watres.2023.119859. Epub 2023 Mar 11.
Per- and polyfluoroalkyl substances (PFAS) are high-profile environmental contaminants, many having long persistence in the environment and widespread presence in humans and wildlife. Following phase-out of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in North America and restrictions in Europe, PFAS replacements are now widely found in the environment. While liquid chromatography (LC)-mass spectrometry (MS) is typically used for measurement, much of the PFAS is missed. To more comprehensively capture organic fluorine, we developed sensitive and robust methods using activated carbon adsorption, solid phase extraction, and combustion ion chromatography (CIC) to measure total organic fluorine (TOF) in industrial wastewaters, river water, and air. Two extraction techniques, adsorbable organic fluorine (AOF) and extractable organic fluorine (EOF), were optimized and compared using 39 different PFAS, including replacements, such as GenX and perfluorobutanesulfonate. Our AOF method achieves 46-112% and 87% recovery for individual PFAS and PFAS mixtures, respectively, with 0.5 µg/L limit of detection (LOD) for a 50 mL sample volume and a 0.3 μg/L LOD for a 500 mL sample volume . Our EOF method achieves 72-99% and 91% recovery for individual PFAS and PFAS mixtures, respectively, with 0.2 µg/L LOD for a 500 mL sample volume and 0.1 μg/L LOD for 1200 mL. In addition to 39 anionic PFAS, two zwitterionic PFAS and two neutral PFAS were evaluated using the optimized TOF methods. Substantially higher TOF values were measured in industrial wastewater, river water, and air samples compared to LC-MS/MS, demonstrating how TOF methods provided a more comprehensive measurement of the total PFAS present, capturing known and unknown organic fluorine.
全氟和多氟烷基物质(PFAS)是备受关注的环境污染物,许多物质在环境中具有长期持久性,并且广泛存在于人类和野生动物体内。在北美淘汰全氟辛烷磺酸(PFOS)和全氟辛酸(PFOA)以及在欧洲限制使用之后,PFAS 的替代品现在广泛存在于环境中。虽然通常使用液相色谱(LC)-质谱(MS)进行测量,但大部分 PFAS 都被遗漏了。为了更全面地捕捉有机氟,我们开发了灵敏而强大的方法,使用活性炭吸附、固相萃取和燃烧离子色谱(CIC)来测量工业废水中、河水中和空气中的总有机氟(TOF)。使用 39 种不同的 PFAS(包括替代品,如 GenX 和全氟丁烷磺酸)优化并比较了两种提取技术,可吸附有机氟(AOF)和可提取有机氟(EOF)。我们的 AOF 方法分别实现了单个 PFAS 和 PFAS 混合物 46-112%和 87%的回收率,对于 50 mL 样品体积,检测限(LOD)为 0.5 µg/L,对于 500 mL 样品体积,LOD 为 0.3 µg/L。我们的 EOF 方法分别实现了单个 PFAS 和 PFAS 混合物 72-99%和 91%的回收率,对于 500 mL 样品体积,LOD 为 0.2 µg/L,对于 1200 mL 样品体积,LOD 为 0.1 µg/L。除了 39 种阴离子 PFAS 外,还使用优化的 TOF 方法评估了两种两性离子 PFAS 和两种中性 PFAS。与 LC-MS/MS 相比,在工业废水、河水和空气中样品中测量到的 TOF 值要高得多,这表明 TOF 方法如何提供了对存在的总 PFAS 的更全面测量,捕获了已知和未知的有机氟。