Jiménez-Sánchez Daniel, López-Janeiro Álvaro, Villalba-Esparza María, Ariz Mikel, Kadioglu Ece, Masetto Ivan, Goubert Virginie, Lozano Maria D, Melero Ignacio, Hardisson David, Ortiz-de-Solórzano Carlos, de Andrea Carlos E
Program of Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain.
NPJ Digit Med. 2023 Mar 23;6(1):48. doi: 10.1038/s41746-023-00795-x.
Predicting recurrence in low-grade, early-stage endometrial cancer (EC) is both challenging and clinically relevant. We present a weakly-supervised deep learning framework, NaroNet, that can learn, without manual expert annotation, the complex tumor-immune interrelations at three levels: local phenotypes, cellular neighborhoods, and tissue areas. It uses multiplexed immunofluorescence for the simultaneous visualization and quantification of CD68 + macrophages, CD8 + T cells, FOXP3 + regulatory T cells, PD-L1/PD-1 protein expression, and tumor cells. We used 489 tumor cores from 250 patients to train a multilevel deep-learning model to predict tumor recurrence. Using a tenfold cross-validation strategy, our model achieved an area under the curve of 0.90 with a 95% confidence interval of 0.83-0.95. Our model predictions resulted in concordance for 96,8% of cases (κ = 0.88). This method could accurately assess the risk of recurrence in EC, outperforming current prognostic factors, including molecular subtyping.
预测低级别、早期子宫内膜癌(EC)的复发既具有挑战性又具有临床相关性。我们提出了一种弱监督深度学习框架NaroNet,它无需专家手动标注,就能在三个层面学习复杂的肿瘤-免疫相互关系:局部表型、细胞邻域和组织区域。它使用多重免疫荧光技术同时可视化和定量分析CD68 +巨噬细胞、CD8 + T细胞、FOXP3 +调节性T细胞、PD-L1/PD-1蛋白表达以及肿瘤细胞。我们使用来自250名患者的489个肿瘤核心来训练一个多级深度学习模型,以预测肿瘤复发。采用十折交叉验证策略,我们的模型曲线下面积为0.90,95%置信区间为0.83-0.95。我们的模型预测在96.8%的病例中达成一致(κ = 0.88)。该方法能够准确评估EC的复发风险,优于包括分子亚型在内的当前预后因素。