Suppr超能文献

用于传染病诊断的双检测算法:对2019冠状病毒病的影响

Two-test algorithms for infectious disease diagnosis: Implications for COVID-19.

作者信息

Pokharel Sunil, White Lisa J, Sacks Jilian A, Escadafal Camille, Toporowski Amy, Mohammed Sahra Isse, Abera Solomon Chane, Kao Kekeletso, Melo Freitas Marcela De, Dittrich Sabine

机构信息

Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom.

Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland.

出版信息

PLOS Glob Public Health. 2022 Mar 31;2(3):e0000293. doi: 10.1371/journal.pgph.0000293. eCollection 2022.

Abstract

Diagnostic assays for various infectious diseases, including COVID-19, have been challenged for their utility as standalone point-of-care diagnostic tests due to suboptimal accuracy, complexity, high cost or long turnaround times for results. It is therefore critical to optimise their use to meet the needs of users. We used a simulation approach to estimate diagnostic outcomes, number of tests required and average turnaround time of using two-test algorithms compared with singular testing; the two tests were reverse transcription polymerase chain reaction (RT-PCR) and an antigen-based rapid diagnostic test (Ag-RDT). A web-based application of the model was developed to visualise and compare diagnostic outcomes for different disease prevalence and test performance characteristics (sensitivity and specificity). We tested the model using hypothetical prevalence data for COVID-19, representing low- and high-prevalence contexts and performance characteristics of RT-PCR and Ag-RDTs. The two-test algorithm when RT-PCR was applied to samples negative by Ag-RDT predicted gains in sensitivity of 27% and 7%, respectively, compared with Ag-RDT and RT-PCR alone. Similarly, when RT-PCR was applied to samples positive by Ag-RDT, specificity gains of 2.9% and 1.9%, respectively, were predicted. The algorithm using Ag-RDT followed by RT-PCR as a confirmatory test for positive patients limited the requirement of RT-PCR testing resources to 16,400 and 3,034 tests when testing a population of 100,000 with an infection prevalence of 20% and 0.05%, respectively. A two-test algorithm comprising a rapid screening test followed by confirmatory laboratory testing can reduce false positive rate, produce rapid results and conserve laboratory resources, but can lead to large number of missed cases in high prevalence setting. The web application of the model can identify the best testing strategies, tailored to specific use cases and we also present some examples how it was used as part of the Access to Covid-19 Tools (ACT) Accelerator Diagnostics Pillar.

摘要

包括新冠病毒病在内的各种传染病的诊断检测,由于准确性欠佳、操作复杂、成本高昂或结果周转时间长,其作为独立的即时诊断检测的效用受到了挑战。因此,优化其使用以满足用户需求至关重要。我们采用模拟方法来估计诊断结果、所需检测数量以及与单次检测相比使用两次检测算法的平均周转时间;这两种检测分别是逆转录聚合酶链反应(RT-PCR)和基于抗原的快速诊断检测(Ag-RDT)。开发了该模型的基于网络的应用程序,以可视化和比较不同疾病患病率以及检测性能特征(敏感性和特异性)下的诊断结果。我们使用新冠病毒病的假设患病率数据对该模型进行了测试,这些数据代表了低患病率和高患病率情况以及RT-PCR和Ag-RDT的性能特征。当将RT-PCR应用于Ag-RDT检测为阴性的样本时,与单独使用Ag-RDT和RT-PCR相比,两次检测算法预计敏感性分别提高27%和7%。同样,当将RT-PCR应用于Ag-RDT检测为阳性的样本时,预计特异性分别提高2.9%和1.9%。对于感染患病率分别为20%和0.05%的100,000人群进行检测时,使用Ag-RDT随后进行RT-PCR作为阳性患者的确认检测的算法,将RT-PCR检测资源的需求分别限制在16,400次和3,034次检测。由快速筛查检测随后进行确认性实验室检测组成的两次检测算法可以降低假阳性率、快速得出结果并节省实验室资源,但在高患病率情况下可能导致大量漏诊病例。该模型的网络应用程序可以确定针对特定用例量身定制的最佳检测策略,并且我们还展示了一些它如何作为新冠病毒病应对工具(ACT)加速器诊断支柱的一部分被使用的示例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53ff/10021374/5ae5c0d9f91f/pgph.0000293.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验