Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Gonda Room 6554A, Los Angeles, CA, 90095, USA.
Department of Human Genetics, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
BMC Bioinformatics. 2023 Mar 24;24(1):115. doi: 10.1186/s12859-023-05233-z.
Gene co-expression networks represent modules of genes with shared biological function, and have been widely used to model biological pathways in gene expression data. Co-expression networks associated with a specific trait can be constructed and identified using weighted gene co-expression network analysis (WGCNA), which is especially useful for the study of transcriptional signatures in disease. WGCNA networks are typically constructed using both disease and wildtype samples, so molecular pathways associated with disease are identified. However, it would be advantageous to study such co-expression networks in their disease context across spatiotemporal conditions, but currently there is no comprehensive software implementation for this type of analysis.
Here, we introduce a WGCNA-based procedure, multiWGCNA, that is tailored to datasets with variable spatial or temporal traits. As well as constructing the combined network, multiWGCNA also generates a network for each condition separately, and subsequently maps these modules between and across designs, and performs relevant downstream analyses, including module-trait correlation and module preservation. When applied to astrocyte-specific RNA-sequencing (RNA-seq) data from various brain regions of mice with experimental autoimmune encephalitis, multiWGCNA resolved the de novo formation of the neurotoxic astrocyte transcriptional program exclusively in the disease setting. Using time-course RNA-seq from mice with tau pathology (rTg4510), we demonstrate how multiWGCNA can also be used to study the temporal evolution of pathological modules over the course of disease progression.
The multiWGCNA R package can be applied to expression data with two dimensions, which is especially useful for the study of disease-associated modules across time or space. The source code and functions are freely available at: https://github.com/fogellab/multiWGCNA .
基因共表达网络代表具有共同生物学功能的基因模块,已广泛用于对基因表达数据中的生物途径进行建模。可以使用加权基因共表达网络分析(WGCNA)构建和识别与特定特征相关的共表达网络,这对于研究疾病中的转录特征尤其有用。WGCNA 网络通常使用疾病和野生型样本进行构建,因此可以识别与疾病相关的分子途径。然而,在时空条件下研究这种疾病背景下的共表达网络将是有利的,但目前还没有用于此类分析的综合软件实现。
在这里,我们介绍了一种基于 WGCNA 的程序 multiWGCNA,它针对具有可变空间或时间特征的数据集进行了定制。除了构建组合网络外,multiWGCNA 还为每个条件分别生成一个网络,然后在设计之间映射这些模块,并执行相关的下游分析,包括模块特征相关性和模块保存。当应用于具有实验性自身免疫性脑脊髓炎的小鼠各种大脑区域的星形胶质细胞特异性 RNA 测序(RNA-seq)数据时,multiWGCNA 专门在疾病环境中解析了神经毒性星形胶质细胞转录程序的从头形成。使用具有 tau 病理(rTg4510)的小鼠的时间过程 RNA-seq,我们演示了 multiWGCNA 如何用于研究疾病进展过程中病理模块的时间演变。
multiWGCNA R 包可应用于具有两个维度的表达数据,这对于研究跨时间或空间的疾病相关模块特别有用。源代码和功能可在以下网址免费获取:https://github.com/fogellab/multiWGCNA。