Suppr超能文献

具有异质性和社会传播的传染病建模。

Epidemic modeling with heterogeneity and social diffusion.

机构信息

École des hautes études en sciences sociales and CNRS, CAMS, Paris, France.

Institute for Advanced Study, Hong Kong University of Science and Technology, Sai Kung, Hong Kong.

出版信息

J Math Biol. 2023 Mar 25;86(4):60. doi: 10.1007/s00285-022-01861-w.

Abstract

We propose and analyze a family of epidemiological models that extend the classic Susceptible-Infectious-Recovered/Removed (SIR)-like framework to account for dynamic heterogeneity in infection risk. The family of models takes the form of a system of reaction-diffusion equations given populations structured by heterogeneous susceptibility to infection. These models describe the evolution of population-level macroscopic quantities S, I, R as in the classical case coupled with a microscopic variable f, giving the distribution of individual behavior in terms of exposure to contagion in the population of susceptibles. The reaction terms represent the impact of sculpting the distribution of susceptibles by the infection process. The diffusion and drift terms that appear in a Fokker-Planck type equation represent the impact of behavior change both during and in the absence of an epidemic. We first study the mathematical foundations of this system of reaction-diffusion equations and prove a number of its properties. In particular, we show that the system will converge back to the unique equilibrium distribution after an epidemic outbreak. We then derive a simpler system by seeking self-similar solutions to the reaction-diffusion equations in the case of Gaussian profiles. Notably, these self-similar solutions lead to a system of ordinary differential equations including classic SIR-like compartments and a new feature: the average risk level in the remaining susceptible population. We show that the simplified system exhibits a rich dynamical structure during epidemics, including plateaus, shoulders, rebounds and oscillations. Finally, we offer perspectives and caveats on ways that this family of models can help interpret the non-canonical dynamics of emerging infectious diseases, including COVID-19.

摘要

我们提出并分析了一系列流行病学模型,这些模型扩展了经典的易感-感染-恢复/清除(SIR)框架,以考虑感染风险的动态异质性。该模型家族采用反应扩散方程系统的形式,将人群结构化为对感染的异质易感性。这些模型描述了在经典情况下的人口水平宏观量 S、I、R 的演变,同时耦合了一个微观变量 f,该变量给出了易感人群中个体行为在接触传染病方面的分布。反应项表示通过感染过程塑造易感人群分布的影响。在福克-普朗克(Fokker-Planck)类型方程中出现的扩散和漂移项代表了在没有和存在流行病期间行为变化的影响。我们首先研究了这个反应扩散方程系统的数学基础,并证明了它的一些性质。特别是,我们表明,该系统在疫情爆发后将回到唯一的平衡分布。然后,我们通过在高斯分布的情况下寻找反应扩散方程的自相似解,推导出一个更简单的系统。值得注意的是,这些自相似解导致了一个包含经典 SIR 样隔室和一个新特征的常微分方程组:剩余易感人群中的平均风险水平。我们表明,简化系统在疫情期间表现出丰富的动力学结构,包括高原、肩部、反弹和振荡。最后,我们提供了一些观点和警示,说明这种模型家族可以帮助解释新兴传染病的非典型动力学,包括 COVID-19。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8810/10039850/eb42247c647b/285_2022_1861_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验