Suppr超能文献

适应性社会接触率在传染病期间引发复杂的动态变化。

Adaptive social contact rates induce complex dynamics during epidemics.

机构信息

School of Medicine, Stanford University, Stanford, California, United States of America.

Department of Earth Systems Science, Stanford University, Stanford, California, United States of America.

出版信息

PLoS Comput Biol. 2021 Feb 10;17(2):e1008639. doi: 10.1371/journal.pcbi.1008639. eCollection 2021 Feb.

Abstract

Epidemics may pose a significant dilemma for governments and individuals. The personal or public health consequences of inaction may be catastrophic; but the economic consequences of drastic response may likewise be catastrophic. In the face of these trade-offs, governments and individuals must therefore strike a balance between the economic and personal health costs of reducing social contacts and the public health costs of neglecting to do so. As risk of infection increases, potentially infectious contact between people is deliberately reduced either individually or by decree. This must be balanced against the social and economic costs of having fewer people in contact, and therefore active in the labor force or enrolled in school. Although the importance of adaptive social contact on epidemic outcomes has become increasingly recognized, the most important properties of coupled human-natural epidemic systems are still not well understood. We develop a theoretical model for adaptive, optimal control of the effective social contact rate using traditional epidemic modeling tools and a utility function with delayed information. This utility function trades off the population-wide contact rate with the expected cost and risk of increasing infections. Our analytical and computational analysis of this simple discrete-time deterministic strategic model reveals the existence of an endemic equilibrium, oscillatory dynamics around this equilibrium under some parametric conditions, and complex dynamic regimes that shift under small parameter perturbations. These results support the supposition that infectious disease dynamics under adaptive behavior change may have an indifference point, may produce oscillatory dynamics without other forcing, and constitute complex adaptive systems with associated dynamics. Implications for any epidemic in which adaptive behavior influences infectious disease dynamics include an expectation of fluctuations, for a considerable time, around a quasi-equilibrium that balances public health and economic priorities, that shows multiple peaks and surges in some scenarios, and that implies a high degree of uncertainty in mathematical projections.

摘要

传染病可能给政府和个人带来重大困境。不作为可能会造成灾难性的个人或公共卫生后果;但采取严厉措施应对也可能会带来灾难性的经济后果。在这些权衡取舍面前,政府和个人必须在减少社交接触的经济和个人健康成本与忽视这种做法的公共卫生成本之间取得平衡。随着感染风险的增加,人们会有意减少个人或通过法令减少潜在的传染性接触。这必须与接触人数减少(因此劳动力或在校人数减少)的社会和经济成本相平衡。尽管人们越来越认识到适应性社交接触对传染病结果的重要性,但耦合的人类-自然传染病系统的最重要性质仍未得到很好的理解。我们使用传统的传染病建模工具和具有延迟信息的效用函数,为有效社交接触率的适应性最优控制开发了一个理论模型。该效用函数在人群接触率与感染增加的预期成本和风险之间进行权衡。我们对这个简单的离散时间确定性策略模型的分析和计算分析揭示了地方病平衡点的存在,在某些参数条件下,平衡点周围会出现振荡动力学,以及在小参数扰动下会发生复杂的动态转变。这些结果支持了这样一种假设,即在适应性行为改变下传染病动力学可能存在一个无差异点,可能在没有其他强迫的情况下产生振荡动力学,并且构成具有相关动力学的复杂自适应系统。适应性行为影响传染病动力学的任何传染病都可能产生波动,在相当长的时间内围绕着平衡公共卫生和经济优先事项的准平衡,在某些情况下会出现多个峰值和激增,并意味着在数学预测方面存在高度的不确定性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验