Suppr超能文献

一种用于新冠病毒传播中空间传播和异质性的简约方法。

A parsimonious approach for spatial transmission and heterogeneity in the COVID-19 propagation.

作者信息

Roques L, Bonnefon O, Baudrot V, Soubeyrand S, Berestycki H

机构信息

INRAE, BioSP, 84914 Avignon, France.

EHESS, CNRS, CAMS, Paris, France.

出版信息

R Soc Open Sci. 2020 Dec 15;7(12):201382. doi: 10.1098/rsos.201382. eCollection 2020 Dec.

Abstract

Raw data on the number of deaths at a country level generally indicate a spatially variable distribution of COVID-19 incidence. An important issue is whether this pattern is a consequence of environmental heterogeneities, such as the climatic conditions, during the course of the outbreak. Another fundamental issue is to understand the spatial spreading of COVID-19. To address these questions, we consider four candidate epidemiological models with varying complexity in terms of initial conditions, contact rates and non-local transmissions, and we fit them to French mortality data with a mixed probabilistic-ODE approach. Using statistical criteria, we select the model with non-local transmission corresponding to a diffusion on the graph of counties that depends on the geographic proximity, with time-dependent contact rate and spatially constant parameters. This suggests that in a geographically middle size centralized country such as France, once the epidemic is established, the effect of global processes such as restriction policies and sanitary measures overwhelms the effect of local factors. Additionally, this approach reveals the latent epidemiological dynamics including the local level of immunity, and allows us to evaluate the role of non-local interactions on the future spread of the disease.

摘要

国家层面的死亡人数原始数据通常表明,新冠疫情发病率在空间上分布不均。一个重要问题是,这种模式是否是疫情爆发期间诸如气候条件等环境异质性的结果。另一个基本问题是了解新冠病毒的空间传播情况。为解决这些问题,我们考虑了四种在初始条件、接触率和非本地传播方面具有不同复杂性的候选流行病学模型,并采用概率 - 常微分方程混合方法将它们与法国的死亡率数据进行拟合。使用统计标准,我们选择了一种具有非本地传播的模型,该模型对应于县图上依赖地理邻近性的扩散,接触率随时间变化且参数在空间上恒定。这表明,在像法国这样地理面积中等大小的中央集权国家,一旦疫情确立,诸如限制政策和卫生措施等全球进程的影响就会超过局部因素的影响。此外,这种方法揭示了潜在的流行病学动态,包括局部免疫水平,并使我们能够评估非本地相互作用对疾病未来传播的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e41/7813252/d91eebcea137/rsos201382-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验