Suppr超能文献

数字疾病检测:基于事件的互联网生物监测系统的系统综述

Digital disease detection: A systematic review of event-based internet biosurveillance systems.

作者信息

O'Shea Jesse

机构信息

Yale Primary Care Residency Program, Yale University School of Medicine, 1450 Chapel Street, New Haven CT 06511, United States.

出版信息

Int J Med Inform. 2017 May;101:15-22. doi: 10.1016/j.ijmedinf.2017.01.019. Epub 2017 Feb 8.

Abstract

BACKGROUND

Internet access and usage has changed how people seek and report health information. Meanwhile,infectious diseases continue to threaten humanity. The analysis of Big Data, or vast digital data, presents an opportunity to improve disease surveillance and epidemic intelligence. Epidemic intelligence contains two components: indicator based and event-based. A relatively new surveillance type has emerged called event-based Internet biosurveillance systems. These systems use information on events impacting health from Internet sources, such as social media or news aggregates. These systems circumvent the limitations of traditional reporting systems by being inexpensive, transparent, and flexible. Yet, innovations and the functionality of these systems can change rapidly.

AIM

To update the current state of knowledge on event-based Internet biosurveillance systems by identifying all systems, including current functionality, with hopes to aid decision makers with whether to incorporate new methods into comprehensive programmes of surveillance.

METHODS

A systematic review was performed through PubMed, Scopus, and Google Scholar databases, while also including grey literature and other publication types.

RESULTS

50 event-based Internet systems were identified, including an extraction of 15 attributes for each system, described in 99 articles. Each system uses different innovative technology and data sources to gather data, process, and disseminate data to detect infectious disease outbreaks.

CONCLUSIONS

The review emphasises the importance of using both formal and informal sources for timely and accurate infectious disease outbreak surveillance, cataloguing all event-based Internet biosurveillance systems. By doing so, future researchers will be able to use this review as a library for referencing systems, with hopes of learning, building, and expanding Internet-based surveillance systems. Event-based Internet biosurveillance should act as an extension of traditional systems, to be utilised as an additional, supplemental data source to have a more comprehensive estimate of disease burden.

摘要

背景

互联网接入和使用改变了人们获取和报告健康信息的方式。与此同时,传染病继续威胁着人类。大数据分析,即海量数字数据的分析,为改善疾病监测和疫情情报提供了契机。疫情情报包含两个组成部分:基于指标的和基于事件的。一种相对较新的监测类型——基于事件的互联网生物监测系统应运而生。这些系统利用来自互联网来源(如社交媒体或新闻聚合器)的影响健康的事件信息。这些系统具有成本低、透明度高和灵活性强的特点,从而规避了传统报告系统的局限性。然而,这些系统的创新和功能可能会迅速变化。

目的

通过识别所有系统,包括当前功能,更新基于事件的互联网生物监测系统的当前知识状态,以期帮助决策者决定是否将新方法纳入综合监测计划。

方法

通过PubMed、Scopus和谷歌学术数据库进行系统综述,同时纳入灰色文献和其他出版物类型。

结果

共识别出50个基于事件的互联网系统,包括从99篇文章中提取的每个系统的15个属性。每个系统使用不同的创新技术和数据源来收集、处理和传播数据,以检测传染病爆发。

结论

该综述强调了使用正式和非正式来源进行及时准确的传染病爆发监测的重要性,对所有基于事件的互联网生物监测系统进行编目。通过这样做,未来的研究人员将能够将本综述用作参考系统的资料库,希望从中学习、构建和扩展基于互联网的监测系统。基于事件的互联网生物监测应作为传统系统的延伸,用作额外的补充数据源,以更全面地评估疾病负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/903a/7108385/a542d6c47711/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验