Kumar Jeevesh, Shrivastava Mayank
Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 560012, India.
ACS Omega. 2023 Mar 9;8(11):10176-10184. doi: 10.1021/acsomega.2c07489. eCollection 2023 Mar 21.
The contact resistance of the transition metal dichalcogenide (TMD) devices is not comparable to that of their silicon counterparts, probably due to a lack of clarity in their interface chemistry. Looking beyond the conventional Schottky-Mott rule, the metal chalcogen orbital overlaps, tunnel barrier, and metal-induced gap states (MIGSs) are crucial factors determining different metals' contact properties with TMDs. Exploring their properties helps TMDs' contact resistance engineering, driven mainly by their orbital overlaps and perturbing parameters. This work presents the interface chemistry of TMDs (MoS, MoSe, WS, and WSe) with different metals (Au, Cr, Ni, and Pd) in detail using density functional theory computations. Additionally, the work discusses the role of the chalcogen vacancy and interstitial defects in the metal-TMD interactions and corresponding MIGS features. The investigations reveal that Au does not show any significant MIGS due to its weak interactions with all the TMDs. However, other investigated metals have a strong affinity with TMDs, making significant MIGS contributions. All the metals offer n-type doping characteristics to TMDs due to valence charge transfer from the metals toward TMDs. The chalcogen vacancy boosts the orbital overlaps of the TMDs with all the metals. The vacancy reduces metal-TMD interfacial distance, which can be a promising technique to reduce the tunnel barrier and contact resistance. The MIGS and defect-induced gap states (DIGSs) reflect the possibility of Fermi-level pinning in the TMDs' contacts with Cr, Ni, and Pd. Besides, the work discloses that the chalcogen vacancy converts an n-type Pd-TMD interface into p-type due to reverse charge transfer after the vacancy. Chalcogen interstitial impurity also helps with contact resistance engineering for some metal-TMD systems by reducing the bond distance of the metal TMDs. Our study highlights the possibility of defect-assisted and MIGS-based contact engineering at the metal-TMD interfaces.
过渡金属二硫属化物(TMD)器件的接触电阻无法与其硅基对应物相比,这可能是由于其界面化学尚不明确。超越传统的肖特基 - 莫特规则,金属硫属化物轨道重叠、隧道势垒和金属诱导能隙态(MIGS)是决定不同金属与TMD接触特性的关键因素。探索它们的特性有助于TMD的接触电阻工程,这主要由它们的轨道重叠和微扰参数驱动。这项工作使用密度泛函理论计算详细展示了TMD(MoS、MoSe、WS和WSe)与不同金属(Au、Cr、Ni和Pd)的界面化学。此外,这项工作讨论了硫属空位和间隙缺陷在金属 - TMD相互作用以及相应MIGS特征中的作用。研究表明,Au与所有TMD的相互作用较弱,因此未显示出任何显著的MIGS。然而,其他研究的金属与TMD有很强的亲和力,对MIGS有显著贡献。由于价电荷从金属向TMD转移,所有金属都为TMD提供n型掺杂特性。硫属空位增强了TMD与所有金属的轨道重叠。空位减小了金属 - TMD界面距离,这可能是降低隧道势垒和接触电阻的一种有前景的技术。MIGS和缺陷诱导能隙态(DIGS)反映了在TMD与Cr、Ni和Pd接触中费米能级钉扎的可能性。此外,这项工作还揭示,由于空位后的反向电荷转移,硫属空位将n型Pd - TMD界面转变为p型。硫属间隙杂质也通过减小金属TMD的键距,有助于一些金属 - TMD系统的接触电阻工程。我们的研究突出了在金属 - TMD界面进行缺陷辅助和基于MIGS的接触工程的可能性。