Suppr超能文献

细菌性关节炎的临床预测规则:卡方自动交互检测器决策树分析模型

Clinical prediction rule for bacterial arthritis: Chi-squared automatic interaction detector decision tree analysis model.

作者信息

Kushiro Seiko, Fukui Sayato, Inui Akihiro, Kobayashi Daiki, Saita Mizue, Naito Toshio

机构信息

Department of General Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan.

Department of Internal Medicine, St. Luke's International Hospital, Tokyo, Japan.

出版信息

SAGE Open Med. 2023 Mar 22;11:20503121231160962. doi: 10.1177/20503121231160962. eCollection 2023.

Abstract

OBJECTIVES

Differences in demographic factors, symptoms, and laboratory data between bacterial and non-bacterial arthritis have not been defined. We aimed to identify predictors of bacterial arthritis, excluding synovial testing.

METHODS

This retrospective cross-sectional survey was performed at a university hospital. All patients included received arthrocentesis from January 1, 2010, to December 31, 2020. Clinical information was gathered from medical charts from the time of synovial fluid sample collection. Factors potentially predictive of bacterial arthritis were analyzed using the Student's -test or chi-squared test, and the chi-squared automatic interaction detector decision tree analysis. The resulting subgroups were divided into three groups according to the risk of bacterial arthritis: low-risk, intermediate-risk, or high-risk groups.

RESULTS

A total of 460 patients (male/female = 229/231; mean ± standard deviation age, 70.26 ± 17.66 years) were included, of whom 68 patients (14.8%) had bacterial arthritis. The chi-squared automatic interaction detector decision tree analysis revealed that patients with C-reactive protein > 21.09 mg/dL (incidence of septic arthritis: 48.7%) and C-reactive protein ⩽ 21.09 mg/dL plus 27.70 < platelet count ⩽ 30.70 × 10/μL (incidence: 36.1%) were high-risk groups.

CONCLUSIONS

Our results emphasize that patients categorized as high risk of bacterial arthritis, and appropriate treatment could be initiated as soon as possible.

摘要

目的

细菌性关节炎与非细菌性关节炎在人口统计学因素、症状和实验室数据方面的差异尚未明确。我们旨在确定细菌性关节炎的预测因素,不包括滑膜检测。

方法

这项回顾性横断面调查在一家大学医院进行。纳入的所有患者在2010年1月1日至2020年12月31日期间接受了关节穿刺术。临床信息从滑膜液样本采集时的病历中收集。使用学生t检验或卡方检验以及卡方自动交互检测器决策树分析来分析可能预测细菌性关节炎的因素。根据细菌性关节炎的风险将所得亚组分为三组:低风险、中风险或高风险组。

结果

共纳入460例患者(男/女 = 229/231;平均±标准差年龄,70.26±17.66岁),其中68例患者(14.8%)患有细菌性关节炎。卡方自动交互检测器决策树分析显示,C反应蛋白>21.09mg/dL的患者(脓毒性关节炎发生率:48.7%)以及C反应蛋白≤21.09mg/dL且27.70<血小板计数≤30.70×10⁹/μL的患者(发生率:36.1%)为高风险组。

结论

我们的结果强调,对于被归类为细菌性关节炎高风险的患者,可尽快启动适当的治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9f1/10034275/dab7c5bbefbe/10.1177_20503121231160962-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验