Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA.
Mol Syst Biol. 2023 Jun 12;19(6):e11398. doi: 10.15252/msb.202211398. Epub 2023 Mar 27.
In bacteria, natural transposon mobilization can drive adaptive genomic rearrangements. Here, we build on this capability and develop an inducible, self-propagating transposon platform for continuous genome-wide mutagenesis and the dynamic rewiring of gene networks in bacteria. We first use the platform to study the impact of transposon functionalization on the evolution of parallel Escherichia coli populations toward diverse carbon source utilization and antibiotic resistance phenotypes. We then develop a modular, combinatorial assembly pipeline for the functionalization of transposons with synthetic or endogenous gene regulatory elements (e.g., inducible promoters) as well as DNA barcodes. We compare parallel evolutions across alternating carbon sources and demonstrate the emergence of inducible, multigenic phenotypes and the ease with which barcoded transposons can be tracked longitudinally to identify the causative rewiring of gene networks. This work establishes a synthetic transposon platform that can be used to optimize strains for industrial and therapeutic applications, for example, by rewiring gene networks to improve growth on diverse feedstocks, as well as help address fundamental questions about the dynamic processes that have sculpted extant gene networks.
在细菌中,天然转座子的移动可以驱动适应性的基因组重排。在这里,我们利用这一能力,开发了一种可诱导的、自我传播的转座子平台,用于在细菌中进行全基因组诱变和基因网络的动态重布线。我们首先利用该平台研究转座子功能化对大肠杆菌平行种群向不同碳源利用和抗生素抗性表型进化的影响。然后,我们开发了一种模块化、组合装配的流水线,用于转座子的功能化,包括合成或内源性基因调控元件(如诱导启动子)以及 DNA 条码。我们比较了在交替碳源上的平行进化,并证明了诱导的、多基因表型的出现,以及标记转座子可以很容易地进行纵向跟踪,以确定基因网络的因果重布线。这项工作建立了一个合成转座子平台,可用于优化工业和治疗应用的菌株,例如,通过重新布线基因网络来改善对不同饲料的生长,以及有助于解决关于塑造现存基因网络的动态过程的基本问题。