文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米技术在中风治疗中的应用:更小尺度的新路径。

Nanotechnology in Stroke: New Trails with Smaller Scales.

作者信息

Toljan Karlo, Ashok Anushruti, Labhasetwar Vinod, Hussain M Shazam

机构信息

Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA.

Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.

出版信息

Biomedicines. 2023 Mar 4;11(3):780. doi: 10.3390/biomedicines11030780.


DOI:10.3390/biomedicines11030780
PMID:36979759
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10045028/
Abstract

Stroke is a leading cause of death, long-term disability, and socioeconomic costs, highlighting the urgent need for effective treatment. During acute phase, intravenous administration of recombinant tissue plasminogen activator (tPA), a thrombolytic agent, and endovascular thrombectomy (EVT), a mechanical intervention to retrieve clots, are the only FDA-approved treatments to re-establish cerebral blood flow. Due to a short therapeutic time window and high potential risk of cerebral hemorrhage, a limited number of acute stroke patients benefit from tPA treatment. EVT can be performed within an extended time window, but such intervention is performed only in patients with occlusion in a larger, anatomically more proximal vasculature and is carried out at specialty centers. Regardless of the method, in case of successful recanalization, ischemia-reperfusion injury represents an additional challenge. Further, tPA disrupts the blood-brain barrier integrity and is neurotoxic, aggravating reperfusion injury. Nanoparticle-based approaches have the potential to circumvent some of the above issues and develop a thrombolytic agent that can be administered safely beyond the time window for tPA treatment. Different attributes of nanoparticles are also being explored to develop a multifunctional thrombolytic agent that, in addition to a thrombolytic agent, can contain therapeutics such as an anti-inflammatory, antioxidant, neuro/vasoprotective, or imaging agent, i.e., a theragnostic agent. The focus of this review is to highlight these advances as they relate to cerebrovascular conditions to improve clinical outcomes in stroke patients.

摘要

中风是导致死亡、长期残疾和社会经济成本的主要原因,这凸显了有效治疗的迫切需求。在急性期,静脉注射重组组织型纤溶酶原激活剂(tPA)(一种溶栓剂)和血管内血栓切除术(EVT)(一种用于清除血栓的机械干预方法)是美国食品药品监督管理局(FDA)批准的仅有的两种用于恢复脑血流的治疗方法。由于治疗时间窗短且脑出血风险高,仅有少数急性中风患者能从tPA治疗中获益。EVT可在更长的时间窗内进行,但这种干预仅适用于较大的、解剖位置更靠近近端的血管发生闭塞的患者,且需在专科中心进行。无论采用哪种方法,在成功再通的情况下,缺血再灌注损伤都是一个额外的挑战。此外,tPA会破坏血脑屏障的完整性且具有神经毒性,会加重再灌注损伤。基于纳米颗粒的方法有可能规避上述一些问题,并开发出一种可在tPA治疗时间窗外安全给药的溶栓剂。人们也在探索纳米颗粒的不同特性,以开发一种多功能溶栓剂,除了溶栓剂外,还可包含抗炎、抗氧化、神经/血管保护或成像剂等治疗药物,即一种治疗诊断剂。本综述的重点是突出这些与脑血管疾病相关的进展,以改善中风患者的临床结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c82b/10045028/37971e1240c2/biomedicines-11-00780-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c82b/10045028/ca96f5fd34a1/biomedicines-11-00780-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c82b/10045028/fedbeb6b22e5/biomedicines-11-00780-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c82b/10045028/ad0ae5def2e2/biomedicines-11-00780-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c82b/10045028/fe5f3bb762de/biomedicines-11-00780-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c82b/10045028/db56a08c8fdf/biomedicines-11-00780-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c82b/10045028/37971e1240c2/biomedicines-11-00780-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c82b/10045028/ca96f5fd34a1/biomedicines-11-00780-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c82b/10045028/fedbeb6b22e5/biomedicines-11-00780-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c82b/10045028/ad0ae5def2e2/biomedicines-11-00780-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c82b/10045028/fe5f3bb762de/biomedicines-11-00780-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c82b/10045028/db56a08c8fdf/biomedicines-11-00780-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c82b/10045028/37971e1240c2/biomedicines-11-00780-g006.jpg

相似文献

[1]
Nanotechnology in Stroke: New Trails with Smaller Scales.

Biomedicines. 2023-3-4

[2]
Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke.

Stroke. 2003-8

[3]
Advances in stroke therapy.

Drug Deliv Transl Res. 2011-12-1

[4]
Angioedema and Hemorrhage After 4.5-Hour tPA (Tissue-Type Plasminogen Activator) Thrombolysis Ameliorated by T541 via Restoring Brain Microvascular Integrity.

Stroke. 2018-9

[5]
Outcomes of endovascular thrombectomy with and without bridging thrombolysis for acute large vessel occlusion ischaemic stroke.

Intern Med J. 2019-3

[6]
Large-Vessel Occlusion Stroke: Effect of Recanalization on Outcome Depends on the National Institutes of Health Stroke Scale Score.

J Stroke Cerebrovasc Dis. 2015-7

[7]
Association of Multiple Passes during Mechanical Thrombectomy with Incomplete Reperfusion and Lesion Growth.

Cerebrovasc Dis. 2022

[8]
Transient brain hypothermia reduces the reperfusion injury of delayed tissue plasminogen activator and extends its therapeutic time window in a focal embolic stroke model.

Brain Res Bull. 2017-7-11

[9]
Safety and Feasibility of Argatroban, Recombinant Tissue Plasminogen Activator, and Intra-Arterial Therapy in Stroke (ARTSS-IA Study).

J Stroke Cerebrovasc Dis. 2018-12

[10]
Clinical Outcomes of Endovascular Thrombectomy in Tissue Plasminogen Activator versus Non-Tissue Plasminogen Activator Patients at Primary Stroke Care Centers.

J Neurosci Rural Pract. 2018

引用本文的文献

[1]
Synergistic Neuroprotection of Artesunate and Tetramethylpyrazine in Ischemic Stroke, Mechanisms of Blood-Brain Barrier Preservation.

Int J Mol Sci. 2025-8-18

[2]
Macrophage-mimetic liposomes co-delivering ceria and Ac2-26 peptide for penumbra protection in ischemic stroke.

J Nanobiotechnology. 2025-7-5

[3]
Nanoparticles for Thrombolytic Therapy in Ischemic Stroke: A Systematic Review and Meta-Analysis of Preclinical Studies.

Pharmaceutics. 2025-2-6

[4]
αAsarone alleviates neuronal injury by facilitating autophagy via miR-499-5p/PDCD4/ATG5 signaling pathway in ischemia stroke.

Front Pharmacol. 2025-1-23

[5]
Role of Nanotechnology in Ischemic Stroke: Advancements in Targeted Therapies and Diagnostics for Enhanced Clinical Outcomes.

J Funct Biomater. 2025-1-1

[6]
Navigating the nano-bio immune interface: advancements and challenges in CNS nanotherapeutics.

Front Immunol. 2024

[7]
Clinical Applications of Micro/Nanobubble Technology in Neurological Diseases.

Biomimetics (Basel). 2024-10-20

[8]
Reactive Oxygen Species-Responsive Chitosan-Bilirubin Nanoparticles Loaded with Statin for Treatment of Cerebral Ischemia.

Biomater Res. 2024-10-24

[9]
Stroke: Evolution of newer treatment modalities for acute ischemic stroke.

World J Clin Cases. 2024-10-6

[10]
Beyond wrecking a wall: revisiting the concept of blood-brain barrier breakdown in ischemic stroke.

Neural Regen Res. 2025-7-1

本文引用的文献

[1]
Molecularly self-fueled nano-penetrator for nonpharmaceutical treatment of thrombosis and ischemic stroke.

Nat Commun. 2023-1-17

[2]
Clot-targeted magnetic hyperthermia permeabilizes blood clots to make them more susceptible to thrombolysis.

J Thromb Haemost. 2022-11

[3]
Peptidomimetic Lipid-Nanoparticle-Mediated Knockdown of TLR4 in CNS Protects against Cerebral Ischemia/Reperfusion Injury in Mice.

Nanomaterials (Basel). 2022-6-16

[4]
Polymer-drug conjugates: Design principles, emerging synthetic strategies and clinical overview.

Int J Pharm. 2022-7-25

[5]
MnCO@BSA-ICG nanoparticles as a magnetic resonance/photoacoustic dual-modal contrast agent for functional imaging of acute ischemic stroke.

Biochem Biophys Res Commun. 2022-7-23

[6]
Brain-targeting, acid-responsive antioxidant nanoparticles for stroke treatment and drug delivery.

Bioact Mater. 2022-3-7

[7]
Antioxidant Therapy in Oxidative Stress-Induced Neurodegenerative Diseases: Role of Nanoparticle-Based Drug Delivery Systems in Clinical Translation.

Antioxidants (Basel). 2022-2-17

[8]
Melanin nanoparticles enhance the neuroprotection of mesenchymal stem cells against hypoxic-ischemic injury by inhibiting apoptosis and upregulating antioxidant defense.

Cell Biol Int. 2022-6

[9]
Tenecteplase vs. alteplase for acute ischemic stroke: a systematic review.

Int J Emerg Med. 2022-1-4

[10]
Oxidative Stress in the Brain: Basic Concepts and Treatment Strategies in Stroke.

Antioxidants (Basel). 2021-11-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索