文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于液体分析物实时葡萄糖监测的3D打印微流控芯片

3D-Printed Microfluidic Chip for Real-Time Glucose Monitoring in Liquid Analytes.

作者信息

Podunavac Ivana, Djocos Miroslav, Vejin Marija, Birgermajer Slobodan, Pavlovic Zoran, Kojic Sanja, Petrovic Bojan, Radonic Vasa

机构信息

University of Novi Sad, BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia.

University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia.

出版信息

Micromachines (Basel). 2023 Feb 21;14(3):503. doi: 10.3390/mi14030503.


DOI:10.3390/mi14030503
PMID:36984909
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10052769/
Abstract

The connection of macrosystems with microsystems for in-line measurements is important in different biotechnological processes as it enables precise and accurate monitoring of process parameters at a small scale, which can provide valuable insights into the process, and ultimately lead to improved process control and optimization. Additionally, it allows continuous monitoring without the need for manual sampling and analysis, leading to more efficient and cost-effective production. In this paper, a 3D printed microfluidic (MF) chip for glucose (Glc) sensing in a liquid analyte is proposed. The chip made in Poly(methyl methacrylate) (PMMA) contains integrated serpentine-based micromixers realized via stereolithography with a slot for USB-like integration of commercial DropSens electrodes. After adjusting the sample's pH in the first micromixer, small volumes of the sample and enzyme are mixed in the second micromixer and lead to a sensing chamber where the Glc concentration is measured via chronoamperometry. The sensing potential was examined for Glc concentrations in acetate buffer in the range of 0.1-100 mg/mL and afterward tested for Glc sensing in a cell culturing medium. The proposed chip showed great potential for connection with macrosystems, such as bioreactors, for direct in-line monitoring of a quality parameter in a liquid sample.

摘要

宏系统与微系统的连接用于在线测量,在不同的生物技术过程中至关重要,因为它能够在小尺度上精确、准确地监测过程参数,这可为过程提供有价值的见解,并最终实现更好的过程控制和优化。此外,它无需人工采样和分析即可进行连续监测,从而实现更高效、更具成本效益的生产。本文提出了一种用于液体分析物中葡萄糖(Glc)传感的3D打印微流控(MF)芯片。该芯片由聚甲基丙烯酸甲酯(PMMA)制成,包含通过立体光刻实现的集成蛇形微混合器,并带有一个用于类似USB集成商用DropSens电极的插槽。在第一个微混合器中调节样品的pH值后,小体积的样品和酶在第二个微混合器中混合,然后进入传感腔室,通过计时电流法测量Glc浓度。对醋酸盐缓冲液中0.1 - 100 mg/mL范围内的Glc浓度检测了传感电位,随后在细胞培养基中测试了Glc传感。所提出的芯片显示出与生物反应器等宏系统连接的巨大潜力,可用于直接在线监测液体样品中的质量参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8395/10052769/04b436cb0e58/micromachines-14-00503-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8395/10052769/766f75154274/micromachines-14-00503-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8395/10052769/61d9716e704e/micromachines-14-00503-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8395/10052769/8bb6c1da21c1/micromachines-14-00503-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8395/10052769/957543fb9038/micromachines-14-00503-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8395/10052769/04b436cb0e58/micromachines-14-00503-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8395/10052769/766f75154274/micromachines-14-00503-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8395/10052769/61d9716e704e/micromachines-14-00503-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8395/10052769/8bb6c1da21c1/micromachines-14-00503-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8395/10052769/957543fb9038/micromachines-14-00503-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8395/10052769/04b436cb0e58/micromachines-14-00503-g005.jpg

相似文献

[1]
3D-Printed Microfluidic Chip for Real-Time Glucose Monitoring in Liquid Analytes.

Micromachines (Basel). 2023-2-21

[2]
Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.

PLoS One. 2020-10-28

[3]
Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.

Biosensors (Basel). 2022-8-17

[4]
A three-dimensional electrochemical paper-based analytical device for low-cost diagnostics.

Analyst. 2018-2-26

[5]
Innovative 3D Microfluidic Tools for On-Chip Fluids and Particles Manipulation: From Design to Experimental Validation.

Micromachines (Basel). 2021-1-21

[6]
3D Printing Solutions for Microfluidic Chip-To-World Connections.

Micromachines (Basel). 2018-2-6

[7]
A Novel Microfluidic-Based OMC-PEDOT-PSS Composite Electrochemical Sensor for Continuous Dopamine Monitoring.

Biosensors (Basel). 2022-12-31

[8]
Simple and low-cost production of hybrid 3D-printed microfluidic devices.

Biomicrofluidics. 2019-4-23

[9]
Fused Deposition Modeling of Microfluidic Chips in Polymethylmethacrylate.

Micromachines (Basel). 2020-9-19

[10]
A novel screen-printed microfluidic paper-based electrochemical device for detection of glucose and uric acid in urine.

Biomed Microdevices. 2016-10

引用本文的文献

[1]
Wearable Electrochemical Glucose Sensors for Fluid Monitoring: Advances and Challenges in Non-Invasive and Minimally Invasive Technologies.

Biosensors (Basel). 2025-5-12

[2]
Enhancing the Design of Microdevices: The Role of Computational Fluid Dynamics and Experimental Investigation.

Micromachines (Basel). 2025-3-9

[3]
Analysis of Covarine Particle in Toothpaste Through Microfluidic Simulation, Experimental Validation, and Electrical Impedance Spectroscopy.

ACS Omega. 2024-2-23

[4]
The 3D Printing of Nanocomposites for Wearable Biosensors: Recent Advances, Challenges, and Prospects.

Bioengineering (Basel). 2023-12-27

[5]
Design and Fabrication of a 3D-Printed Microfluidic Immunoarray for Ultrasensitive Multiplexed Protein Detection.

Micromachines (Basel). 2023-11-30

[6]
Recent Methods for Modifying Mechanical Properties of Tissue-Engineered Scaffolds for Clinical Applications.

Biomimetics (Basel). 2023-5-16

本文引用的文献

[1]
A Review of Research Progress in Selective Laser Melting (SLM).

Micromachines (Basel). 2022-12-25

[2]
Additive manufacturing technologies with emphasis on stereolithography 3D printing in pharmaceutical and medical applications: A review.

Int J Pharm X. 2023-1-3

[3]
Recent Trends of Microfluidics in Food Science and Technology: Fabrications and Applications.

Foods. 2022-11-20

[4]
Integrated lab-on-a-chip devices: Fabrication methodologies, transduction system for sensing purposes.

J Pharm Biomed Anal. 2023-1-20

[5]
Paper-Based Enzymatic Electrochemical Sensors for Glucose Determination.

Sensors (Basel). 2022-8-19

[6]
A lab-on-a-chip that takes the chip out of the lab.

Nature. 2022-5

[7]
Introduction: Microfluidics.

Chem Rev. 2022-4-13

[8]
Customized 3D-printed stackable cell culture inserts tailored with bioactive membranes.

Sci Rep. 2022-3-7

[9]
Challenges and opportunities in micro/nanofluidic and lab-on-a-chip.

Prog Mol Biol Transl Sci. 2022

[10]
Sample Preparation for Lab-on-a-Chip Systems in Molecular Diagnosis: A Review.

Anal Chem. 2022-1-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索