Suppr超能文献

从表达谱推断基因网络,再探。

How to infer gene networks from expression profiles, revisited.

机构信息

Systems Biology Centre, University of Warwick, Coventry, CV4 7AL, UK.

出版信息

Interface Focus. 2011 Dec 6;1(6):857-70. doi: 10.1098/rsfs.2011.0053. Epub 2011 Aug 10.

Abstract

Inferring the topology of a gene-regulatory network (GRN) from genome-scale time-series measurements of transcriptional change has proved useful for disentangling complex biological processes. To address the challenges associated with this inference, a number of competing approaches have previously been used, including examples from information theory, Bayesian and dynamic Bayesian networks (DBNs), and ordinary differential equation (ODE) or stochastic differential equation. The performance of these competing approaches have previously been assessed using a variety of in silico and in vivo datasets. Here, we revisit this work by assessing the performance of more recent network inference algorithms, including a novel non-parametric learning approach based upon nonlinear dynamical systems. For larger GRNs, containing hundreds of genes, these non-parametric approaches more accurately infer network structures than do traditional approaches, but at significant computational cost. For smaller systems, DBNs are competitive with the non-parametric approaches with respect to computational time and accuracy, and both of these approaches appear to be more accurate than Granger causality-based methods and those using simple ODEs models.

摘要

从全基因组规模的转录变化时间序列测量中推断基因调控网络 (GRN) 的拓扑结构已被证明对于分解复杂的生物过程非常有用。为了解决与这种推断相关的挑战,之前已经使用了许多竞争方法,包括信息论、贝叶斯和动态贝叶斯网络 (DBN) 以及常微分方程 (ODE) 或随机微分方程的例子。这些竞争方法的性能之前已经使用各种计算机模拟和体内数据集进行了评估。在这里,我们通过评估包括基于非线性动力系统的新的非参数学习方法在内的更新的网络推断算法的性能来重新审视这项工作。对于包含数百个基因的更大的 GRN,这些非参数方法比传统方法更准确地推断网络结构,但计算成本很高。对于较小的系统,DBN 在计算时间和准确性方面与非参数方法具有竞争力,并且这两种方法似乎比基于格兰杰因果关系的方法和使用简单 ODE 模型的方法更准确。

相似文献

1
How to infer gene networks from expression profiles, revisited.从表达谱推断基因网络,再探。
Interface Focus. 2011 Dec 6;1(6):857-70. doi: 10.1098/rsfs.2011.0053. Epub 2011 Aug 10.
3
Inferring gene regulatory networks using transcriptional profiles as dynamical attractors.利用转录谱作为动态吸引子推断基因调控网络。
PLoS Comput Biol. 2023 Aug 22;19(8):e1010991. doi: 10.1371/journal.pcbi.1010991. eCollection 2023 Aug.
4
Inference of Gene Regulatory Network Based on Local Bayesian Networks.基于局部贝叶斯网络的基因调控网络推理
PLoS Comput Biol. 2016 Aug 1;12(8):e1005024. doi: 10.1371/journal.pcbi.1005024. eCollection 2016 Aug.

引用本文的文献

5
Transcriptional signatures of wheat inflorescence development.小麦花序发育的转录特征。
Sci Rep. 2022 Oct 14;12(1):17224. doi: 10.1038/s41598-022-21571-z.
6
Gaining confidence in inferred networks.置信度提升方法在推断网络中的应用。
Sci Rep. 2022 Feb 14;12(1):2394. doi: 10.1038/s41598-022-05402-9.

本文引用的文献

6
Discovering transcriptional modules by Bayesian data integration.基于贝叶斯数据整合的转录模块发现。
Bioinformatics. 2010 Jun 15;26(12):i158-67. doi: 10.1093/bioinformatics/btq210.
8
Revealing strengths and weaknesses of methods for gene network inference.揭示基因网络推断方法的优缺点。
Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6286-91. doi: 10.1073/pnas.0913357107. Epub 2010 Mar 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验