Grunwell Jocelyn R, Rad Milad G, Ripple Michael J, Yehya Nadir, Wong Hector R, Kamaleswaran Rishikesan
Division of Critical Care Medicine, Children's Healthcare of Atlanta, Atlanta, GA, United States.
Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States.
Front Pediatr. 2023 Mar 17;11:1159473. doi: 10.3389/fped.2023.1159473. eCollection 2023.
There is no generalizable transcriptomics signature of pediatric acute respiratory distress syndrome. Our goal was to identify a whole blood differential gene expression signature for pediatric acute hypoxemic respiratory failure (AHRF) using transcriptomic microarrays within twenty-four hours of diagnosis. We used publicly available human whole-blood gene expression arrays of a Berlin-defined pediatric acute respiratory distress syndrome (GSE147902) cohort and a sepsis-triggered AHRF (GSE66099) cohort within twenty-four hours of diagnosis and compared those children with a PO/FO < 200 to those with a PO/FO ≥ 200.
We used stability selection, a bootstrapping method of 100 simulations using logistic regression as a classifier, to select differentially expressed genes associated with a PO/FO < 200 vs. PO/FO ≥ 200. The top-ranked genes that contributed to the AHRF signature were selected in each dataset. Genes common to both of the top 1,500 ranked gene lists were selected for pathway analysis. Pathway and network analysis was performed using the Pathway Network Analysis Visualizer (PANEV) and Reactome was used to perform an over-representation gene network analysis of the top-ranked genes common to both cohorts. Changes in metabolic pathways involved in energy balance, fundamental cellular processes such as protein translation, mitochondrial function, oxidative stress, immune signaling, and inflammation are differentially regulated early in pediatric ARDS and sepsis-induced AHRF compared to both healthy controls and to milder acute hypoxemia. Specifically, fundamental pathways related to the severity of hypoxemia emerged and included (1) ribosomal and eukaryotic initiation of factor 2 (eIF2) regulation of protein translation and (2) the nutrient, oxygen, and energy sensing pathway, mTOR, activated PI3K/AKT signaling.
Cellular energetics and metabolic pathways are important mechanisms to consider to further our understanding of the heterogeneity and underlying pathobiology of moderate and severe pediatric acute respiratory distress syndrome. Our findings are hypothesis generating and support the study of metabolic pathways and cellular energetics to understand heterogeneity and underlying pathobiology of moderate and severe acute hypoxemic respiratory failure in children.
小儿急性呼吸窘迫综合征不存在可推广的转录组学特征。我们的目标是利用转录组微阵列在诊断后24小时内确定小儿急性低氧性呼吸衰竭(AHRF)的全血差异基因表达特征。我们使用了公开可用的人类全血基因表达阵列,这些阵列来自柏林定义的小儿急性呼吸窘迫综合征(GSE147902)队列和脓毒症引发的AHRF(GSE66099)队列,均在诊断后24小时内,并将动脉血氧分压/吸入氧分数(PO/FO)<200的儿童与PO/FO≥200的儿童进行比较。
我们使用稳定性选择,这是一种使用逻辑回归作为分类器进行100次模拟的自助法,以选择与PO/FO<200对比PO/FO≥200相关的差异表达基因。在每个数据集中选择对AHRF特征有贡献的排名靠前的基因。选择两个排名前1500的基因列表中共同的基因进行通路分析。使用通路网络分析可视化工具(PANEV)进行通路和网络分析,并使用Reactome对两个队列中共同的排名靠前的基因进行过表达基因网络分析。与健康对照和较轻的急性低氧血症相比,小儿急性呼吸窘迫综合征和脓毒症诱导的AHRF早期,能量平衡中涉及的代谢途径、蛋白质翻译等基本细胞过程、线粒体功能、氧化应激、免疫信号传导和炎症的变化受到不同程度的调节。具体而言,与低氧血症严重程度相关的基本途径出现了,包括(1)核糖体和真核起始因子2(eIF2)对蛋白质翻译的调节,以及(2)营养、氧气和能量感应途径,即雷帕霉素靶蛋白(mTOR)激活的磷脂酰肌醇-3激酶/蛋白激酶B(PI3K/AKT)信号传导。
细胞能量学和代谢途径是进一步理解中度和重度小儿急性呼吸窘迫综合征的异质性和潜在病理生物学的重要机制。我们的发现产生了假设,并支持对代谢途径和细胞能量学的研究,以了解儿童中度和重度急性低氧性呼吸衰竭的异质性和潜在病理生物学。