Suppr超能文献

基于混合自适应光学的具有高空间带宽积的体视光学相干显微镜。

Volumetric optical coherence microscopy with a high space-bandwidth- product enabled by hybrid adaptive optics.

作者信息

Liu Siyang, Mulligan Jeffrey A, Adie Steven G

机构信息

School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA.

Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.

出版信息

Biomed Opt Express. 2018 Jun 15;9(7):3137-3152. doi: 10.1364/BOE.9.003137. eCollection 2018 Jul 1.

Abstract

Optical coherence microscopy (OCM) is a promising modality for high resolution imaging, but has limited ability to capture large-scale volumetric information about dynamic biological processes with cellular resolution. To enhance the throughput of OCM, we implemented a hybrid adaptive optics (hyAO) approach that combines computational adaptive optics with an intentionally aberrated imaging beam generated via hardware adaptive optics. Using hyAO, we demonstrate the depth-equalized illumination and collection ability of an astigmatic beam compared to a Gaussian beam for cellular-resolution imaging. With this advantage, we achieved volumetric OCM with a higher space-bandwidth- product compared to Gaussian-beam acquisition that employed focus-scanning across depth. HyAO was also used to perform volumetric time-lapse OCM imaging of cellular dynamics over a 1mm × 1mm × 1mm field-of-view with 2 μm isotropic spatial resolution and 3-minute temporal resolution. As hyAO is compatible with both spectral-domain and swept-source beam-scanning OCM systems, significant further improvements in absolute volumetric throughput are possible by use of ultrahigh-speed swept sources.

摘要

光学相干显微镜(OCM)是一种很有前景的高分辨率成像方式,但在以细胞分辨率捕获有关动态生物过程的大规模体积信息方面能力有限。为了提高OCM的通量,我们实施了一种混合自适应光学(hyAO)方法,该方法将计算自适应光学与通过硬件自适应光学产生的有意像差成像光束相结合。使用hyAO,我们展示了与高斯光束相比,像散光束在细胞分辨率成像中的深度均衡照明和采集能力。凭借这一优势,与采用跨深度聚焦扫描的高斯光束采集相比,我们实现了具有更高空间带宽积的体积OCM。HyAO还用于在1mm×1mm×1mm的视场中对细胞动力学进行体积延时OCM成像,具有2μm各向同性空间分辨率和3分钟时间分辨率。由于hyAO与光谱域和扫频源光束扫描OCM系统都兼容,通过使用超高速扫频源,绝对体积通量有可能得到显著进一步提高。

相似文献

1
Volumetric optical coherence microscopy with a high space-bandwidth- product enabled by hybrid adaptive optics.
Biomed Opt Express. 2018 Jun 15;9(7):3137-3152. doi: 10.1364/BOE.9.003137. eCollection 2018 Jul 1.
2
Computed optical coherence microscopy of mouse brain ex vivo.
J Biomed Opt. 2019 Nov;24(11):1-18. doi: 10.1117/1.JBO.24.11.116002.
3
Computed optical interferometric tomography for high-speed volumetric cellular imaging.
Biomed Opt Express. 2014 Aug 8;5(9):2988-3000. doi: 10.1364/BOE.5.002988. eCollection 2014 Sep 1.
4
Computational adaptive optics for broadband optical interferometric tomography of biological tissue.
Proc Natl Acad Sci U S A. 2012 May 8;109(19):7175-80. doi: 10.1073/pnas.1121193109. Epub 2012 Apr 26.
5
3D in vivo imaging with extended-focus optical coherence microscopy.
J Biophotonics. 2017 Nov;10(11):1411-1420. doi: 10.1002/jbio.201700008. Epub 2017 Apr 18.
6
Spectral fusing Gabor domain optical coherence microscopy based on FPGA processing.
Appl Opt. 2021 Mar 1;60(7):2069-2076. doi: 10.1364/AO.415270.
7
Spectral fusing Gabor domain optical coherence microscopy.
Opt Lett. 2016 Feb 1;41(3):508-11. doi: 10.1364/OL.41.000508.
8
Ultrahigh speed spectral-domain optical coherence microscopy.
Biomed Opt Express. 2013 Jul 1;4(8):1236-54. doi: 10.1364/BOE.4.001236. eCollection 2013.

引用本文的文献

2
Exploiting volumetric wave correlation for enhanced depth imaging in scattering medium.
Nat Commun. 2023 Apr 4;14(1):1878. doi: 10.1038/s41467-023-37467-z.
3
Line-field confocal optical coherence tomography for three-dimensional skin imaging.
Front Optoelectron. 2020 Dec;13(4):381-392. doi: 10.1007/s12200-020-1096-x. Epub 2020 Dec 23.
5
Closed-loop wavefront sensing and correction in the mouse brain with computed optical coherence microscopy.
Biomed Opt Express. 2021 Jul 16;12(8):4934-4954. doi: 10.1364/BOE.427979. eCollection 2021 Aug 1.
6
Imaging biological tissue with high-throughput single-pixel compressive holography.
Nat Commun. 2021 Aug 5;12(1):4712. doi: 10.1038/s41467-021-24990-0.
7
Computed optical coherence microscopy of mouse brain ex vivo.
J Biomed Opt. 2019 Nov;24(11):1-18. doi: 10.1117/1.JBO.24.11.116002.
9
Aberration-diverse optical coherence tomography for suppression of multiple scattering and speckle.
Biomed Opt Express. 2018 Sep 20;9(10):4919-4935. doi: 10.1364/BOE.9.004919. eCollection 2018 Oct 1.

本文引用的文献

1
Extended depth of focus for coherence-based cellular imaging.
Optica. 2017 Aug;4(8):959-965. doi: 10.1364/OPTICA.4.000959. Epub 2017 Aug 9.
2
Phase-stable Doppler OCT at 19 MHz using a stretched-pulse mode-locked laser.
Biomed Opt Express. 2018 Feb 2;9(3):952-961. doi: 10.1364/BOE.9.000952. eCollection 2018 Mar 1.
3
Interferometric synthetic aperture microscopy for extended focus optical coherence microscopy.
Opt Express. 2017 Nov 27;25(24):30807-30819. doi: 10.1364/OE.25.030807.
5
Cell Motility as Contrast Agent in Retinal Explant Imaging With Full-Field Optical Coherence Tomography.
Invest Ophthalmol Vis Sci. 2017 Sep 1;58(11):4605-4615. doi: 10.1167/iovs.17-22375.
6
Visible spectrum extended-focus optical coherence microscopy for label-free sub-cellular tomography.
Biomed Opt Express. 2017 Jun 20;8(7):3343-3359. doi: 10.1364/BOE.8.003343. eCollection 2017 Jul 1.
8
3D in vivo imaging with extended-focus optical coherence microscopy.
J Biophotonics. 2017 Nov;10(11):1411-1420. doi: 10.1002/jbio.201700008. Epub 2017 Apr 18.
9
Measurement of dynamic cell-induced 3D displacement fields for traction force optical coherence microscopy.
Biomed Opt Express. 2017 Jan 27;8(2):1152-1171. doi: 10.1364/BOE.8.001152. eCollection 2017 Feb 1.
10
coherence microscopy [Invited].
Biomed Opt Express. 2017 Jan 6;8(2):622-639. doi: 10.1364/BOE.8.000622. eCollection 2017 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验