Suppr超能文献

历史上的红线政策、健康的社会决定因素与纽约市社区中风的患病率。

Historical Redlining, Social Determinants of Health, and Stroke Prevalence in Communities in New York City.

机构信息

Department of Neurology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York.

Department of Biostatistics and Epidemiology, Rutgers University, Piscataway, New Jersey.

出版信息

JAMA Netw Open. 2023 Apr 3;6(4):e235875. doi: 10.1001/jamanetworkopen.2023.5875.

Abstract

IMPORTANCE

Historical redlining was a discriminatory housing policy that placed financial services beyond the reach of residents in inner-city communities. The extent of the impact of this discriminatory policy on contemporary health outcomes remains to be elucidated.

OBJECTIVE

To evaluate the associations among historical redlining, social determinants of health (SDOH), and contemporary community-level stroke prevalence in New York City.

DESIGN, SETTING, AND PARTICIPANTS: An ecological, retrospective, cross-sectional study was conducted using New York City data from January 1, 2014, to December 31, 2018. Data from the population-based sample were aggregated on the census tract level. Quantile regression analysis and a quantile regression forests machine learning model were used to determine the significance and overall weight of redlining in relation to other SDOH on stroke prevalence. Data were analyzed from November 5, 2021, to January 31, 2022.

EXPOSURES

Social determinants of health included race and ethnicity, median household income, poverty, low educational attainment, language barrier, uninsurance rate, social cohesion, and residence in an area with a shortage of health care professionals. Other covariates included median age and prevalence of diabetes, hypertension, smoking, and hyperlipidemia. Weighted scores for historical redlining (ie, the discriminatory housing policy in effect from 1934 to 1968) were computed using the mean proportion of original redlined territories overlapped on 2010 census tract boundaries in New York City.

MAIN OUTCOMES AND MEASURES

Stroke prevalence was collected from the Centers for Disease Control and Prevention 500 Cities Project for adults 18 years and older from 2014 to 2018.

RESULTS

A total of 2117 census tracts were included in the analysis. After adjusting for SDOH and other relevant covariates, the historical redlining score was independently associated with a higher community-level stroke prevalence (odds ratio [OR], 1.02 [95% CI, 1.02-1.05]; P < .001). Social determinants of health that were positively associated with stroke prevalence included educational attainment (OR, 1.01 [95% CI, 1.01-1.01]; P < .001), poverty (OR, 1.01 [95% CI, 1.01-1.01]; P < .001), language barrier (OR, 1.00 [95% CI, 1.00-1.00]; P < .001), and health care professionals shortage (OR, 1.02 [95% CI, 1.00-1.04]; P = .03).

CONCLUSIONS AND RELEVANCE

This cross-sectional study found that historical redlining was associated with modern-day stroke prevalence in New York City independently of contemporary SDOH and community prevalence of some relevant cardiovascular risk factors.

摘要

重要性

历史上的红线政策是一种歧视性的住房政策,使内城社区的居民无法获得金融服务。这种歧视性政策对当代健康结果的影响程度仍有待阐明。

目的

评估历史上的红线政策、社会决定因素(SDOH)与纽约市当代社区中风患病率之间的关系。

设计、地点和参与者:这是一项生态、回顾性、横断面研究,使用了 2014 年 1 月 1 日至 2018 年 12 月 31 日期间的纽约市数据。基于人群的样本数据被汇总到普查区层面。使用分位数回归分析和分位数回归森林机器学习模型来确定红线政策与其他 SDOH 对中风患病率的意义和总体权重。数据分析于 2021 年 11 月 5 日至 2022 年 1 月 31 日进行。

暴露因素

社会决定因素包括种族和民族、家庭中位收入、贫困、低教育程度、语言障碍、无保险率、社会凝聚力以及居住在医疗保健专业人员短缺地区。其他协变量包括中位年龄和糖尿病、高血压、吸烟和高血脂的患病率。历史红线(1934 年至 1968 年实施的歧视性住房政策)的加权分数是通过计算纽约市 2010 年普查区边界上原始红线区域重叠的平均比例得出的。

主要结果和措施

成年人的中风患病率数据来自疾病控制和预防中心的 500 个城市项目,2014 年至 2018 年期间年龄在 18 岁及以上的成年人。

结果

共纳入 2117 个普查区。在调整了 SDOH 和其他相关协变量后,历史红线评分与更高的社区级中风患病率独立相关(优势比[OR],1.02[95%置信区间,1.02-1.05];P < .001)。与中风患病率呈正相关的社会决定因素包括教育程度(OR,1.01[95%置信区间,1.01-1.01];P < .001)、贫困(OR,1.01[95%置信区间,1.01-1.01];P < .001)、语言障碍(OR,1.00[95%置信区间,1.00-1.00];P < .001)和医疗保健专业人员短缺(OR,1.02[95%置信区间,1.00-1.04];P = .03)。

结论和相关性

这项横断面研究发现,历史红线政策与纽约市现代中风患病率之间存在关联,与当代 SDOH 以及某些相关心血管风险因素的社区患病率无关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/106c/10077098/acac2b9fb8aa/jamanetwopen-e235875-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验