Suppr超能文献

基于尖峰神经网络的低功耗驾驶疲劳监测方法研究。

Research on low-power driving fatigue monitoring method based on spiking neural network.

机构信息

School of Mechanic Engineering, Northeast Electric Power University, Jilin, 132012, China.

College of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China.

出版信息

Exp Brain Res. 2024 Oct;242(10):2457-2471. doi: 10.1007/s00221-024-06911-x. Epub 2024 Aug 23.

Abstract

Fatigue driving is one of the leading causes of traffic accidents, and the rapid and accurate detection of driver fatigue is of paramount importance for enhancing road safety. However, the application of deep learning models in fatigue driving detection has long been constrained by high computational costs and power consumption. To address this issue, this study proposes an approach that combines Self-Organizing Map (SOM) and Spiking Neural Networks (SNN) to develop a low-power model capable of accurately recognizing the driver's mental state. Initially, spatial features are extracted from electroencephalogram (EEG) signals using the SOM network. Subsequently, the extracted weight vectors are encoded and fed into the SNN for fatigue driving classification. The research results demonstrate that the proposed method effectively considers the spatiotemporal characteristics of EEG signals, achieving efficient fatigue detection. Simultaneously, this approach successfully reduces the model's power consumption. When compared to traditional artificial neural networks, our method reduces energy consumption by approximately 12.21-42.59%.

摘要

疲劳驾驶是交通事故的主要原因之一,快速准确地检测驾驶员疲劳对于提高道路安全至关重要。然而,深度学习模型在疲劳驾驶检测中的应用长期以来一直受到高计算成本和功耗的限制。针对这一问题,本研究提出了一种结合自组织映射(SOM)和尖峰神经网络(SNN)的方法,开发了一种能够准确识别驾驶员精神状态的低功耗模型。首先,使用 SOM 网络从脑电图(EEG)信号中提取空间特征。然后,提取的权值向量被编码并输入 SNN 进行疲劳驾驶分类。研究结果表明,所提出的方法有效地考虑了 EEG 信号的时空特征,实现了高效的疲劳检测。同时,该方法成功降低了模型的功耗。与传统的人工神经网络相比,我们的方法将能耗降低了约 12.21%-42.59%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验