Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia.
Sci Rep. 2023 Apr 9;13(1):5799. doi: 10.1038/s41598-023-30129-6.
Nano-cryosurgery is one of the effective ways to treat cancerous cells with minimum harm to healthy adjacent cells. Clinical experimental research consumes time and cost. Thus, developing a mathematical simulation model is useful for time and cost-saving, especially in designing the experiment. Investigating the Casson nanofluid's unsteady flow in an artery with the convective effect is the goal of the current investigation. The nanofluid is considered to flow in the blood arteries. Therefore, the slip velocity effect is concerned. Blood is a base fluid with gold (Au) nanoparticles dispersed in the base fluid. The resultant governing equations are solved by utilising the Laplace transform regarding the time and the finite Hankel transform regarding the radial coordinate. The resulting analytical answers for velocity and temperature are then displayed and visually described. It is found that the temperature enhancement occurred by arising nanoparticles volume fraction and time parameter. The blood velocity increases as the slip velocity, time parameter, thermal Grashof number, and nanoparticles volume fraction increase. Whereas the velocity decreases with the Casson parameter. Thus, by adding Au nanoparticles, the tissue thermal conductivity enhanced which has the consequence of freezing the tissue in nano-cryosurgery treatment significantly.
纳米冷冻手术是治疗癌细胞的有效方法之一,可将对健康相邻细胞的伤害降至最低。临床实验研究既耗时又费钱。因此,开发数学模拟模型有助于节省时间和成本,尤其是在设计实验时。本研究旨在研究具有对流效应的动脉中的 Casson 纳米流体的非稳态流动。纳米流体被认为在血液动脉中流动。因此,关注滑移速度效应。血液是一种基液,其中分散有金(Au)纳米粒子。利用关于时间的拉普拉斯变换和关于径向坐标的有限汉克尔变换来求解所得控制方程。然后显示和直观描述速度和温度的解析解。结果表明,温度升高是由于纳米粒子体积分数和时间参数的增加。随着滑移速度、时间参数、热格拉肖夫数和纳米粒子体积分数的增加,血液速度增加。而速度随 Casson 参数的增加而减小。因此,通过添加 Au 纳米粒子,可以提高组织热导率,这会导致在纳米冷冻手术治疗中显著冷冻组织。