Suppr超能文献

一种用于脑电图信号中癫痫发作检测的混合深度学习方法。

A Hybrid Deep Learning Approach for Epileptic Seizure Detection in EEG signals.

作者信息

Ahmad Ijaz, Wang Xin, Javeed Danish, Kumar Prabhat, Samuel Oluwarotimi Williams, Chen Shixiong

出版信息

IEEE J Biomed Health Inform. 2023 Apr 10;PP. doi: 10.1109/JBHI.2023.3265983.

Abstract

Early detection and proper treatment of epilepsy is essential and meaningful to those who suffer from this disease. The adoption of deep learning (DL) techniques for automated epileptic seizure detection using electroencephalography (EEG) signals has shown great potential in making the most appropriate and fast medical decisions. However, DL algorithms have high computational complexity and suffer low accuracy with imbalanced medical data in multi seizure-classification task. Motivated from the aforementioned challenges, we present a simple and effective hybrid DL approach for epileptic seizure detection in EEG signals. Specifically, first we use a K-means Synthetic minority oversampling technique (SMOTE) to balance the sampling data. Second, we integrate a 1D Convolutional Neural Network (CNN) with a Bidirectional Long Short-Term Memory (BiLSTM) network based on Truncated Backpropagation Through Time (TBPTT) to efficiently extract spatial and temporal sequence information while reducing computational complexity. Finally, the proposed DL architecture uses softmax and sigmoid classifiers at the classification layer to perform multi and binary seizure-classification tasks. In addition, the 10-fold cross-validation technique is performed to show the significance of the proposed DL approach. Experimental results using the publicly available UCI epileptic seizure recognition data set shows better performance in terms of precision, sensitivity, specificity, and F1-score over some baseline DL algorithms and recent state-of-the-art techniques.

摘要

早期发现并妥善治疗癫痫对癫痫患者至关重要且意义重大。采用深度学习(DL)技术利用脑电图(EEG)信号自动检测癫痫发作,在做出最恰当、快速的医疗决策方面已展现出巨大潜力。然而,在多癫痫发作分类任务中,DL算法计算复杂度高,且面对不均衡的医学数据时准确率较低。鉴于上述挑战,我们提出一种简单有效的混合DL方法用于EEG信号中的癫痫发作检测。具体而言,首先我们使用K均值合成少数过采样技术(SMOTE)来平衡采样数据。其次,我们基于截断反向传播通过时间(TBPTT)将一维卷积神经网络(CNN)与双向长短期记忆(BiLSTM)网络相结合,以有效提取空间和时间序列信息,同时降低计算复杂度。最后,所提出的DL架构在分类层使用softmax和sigmoid分类器来执行多癫痫发作分类和二元癫痫发作分类任务。此外,进行了10折交叉验证技术以展示所提出的DL方法的重要性。使用公开可用的UCI癫痫发作识别数据集的实验结果表明,在精度、灵敏度、特异性和F1分数方面,相对于一些基线DL算法和最新的先进技术,该方法具有更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验