基于多头自注意力机制的癫痫检测。

Epilepsy detection based on multi-head self-attention mechanism.

机构信息

Key Laboratory of Oceanographic Big Data Mining & Application of Zhejiang Province, Zhoushan, China.

School of Information Engineering, Zhejiang Ocean University, Zhoushan, China.

出版信息

PLoS One. 2024 Jun 11;19(6):e0305166. doi: 10.1371/journal.pone.0305166. eCollection 2024.

Abstract

CNN has demonstrated remarkable performance in EEG signal detection, yet it still faces limitations in terms of global perception. Additionally, due to individual differences in EEG signals, the generalization ability of epilepsy detection models is week. To address this issue, this paper presents a cross-patient epilepsy detection method utilizing a multi-head self-attention mechanism. This method first utilizes Short-Time Fourier Transform (STFT) to transform the original EEG signals into time-frequency features, then models local information using Convolutional Neural Network (CNN), subsequently captures global dependency relationships between features using the multi-head self-attention mechanism of Transformer, and finally performs epilepsy detection using these features. Meanwhile, this model employs a light multi-head attention mechanism module with an alternating structure, which can comprehensively extract multi-scale features while significantly reducing computational costs. Experimental results on the CHB-MIT dataset show that the proposed model achieves accuracy, sensitivity, specificity, F1 score, and AUC of 92.89%, 96.17%, 92.99%, 94.41%, and 96.77%, respectively. Compared to the existing methods, the method proposed in this paper obtains better performance along with better generalization.

摘要

CNN 在 EEG 信号检测方面表现出色,但它在全局感知方面仍存在局限性。此外,由于 EEG 信号的个体差异,癫痫检测模型的泛化能力较弱。针对这个问题,本文提出了一种利用多头自注意力机制的跨患者癫痫检测方法。该方法首先利用短时傅里叶变换(STFT)将原始 EEG 信号转换为时频特征,然后使用卷积神经网络(CNN)对局部信息进行建模,然后使用 Transformer 的多头自注意力机制捕获特征之间的全局依赖关系,最后使用这些特征进行癫痫检测。同时,该模型采用了具有交替结构的轻量级多头注意力机制模块,可以在显著降低计算成本的同时全面提取多尺度特征。在 CHB-MIT 数据集上的实验结果表明,所提出的模型的准确率、灵敏度、特异性、F1 得分和 AUC 分别为 92.89%、96.17%、92.99%、94.41%和 96.77%。与现有方法相比,本文提出的方法在具有更好的泛化能力的同时获得了更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb62/11166279/d01b0641b671/pone.0305166.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索