Guo Lei, Xie Peisi, Shen Xionghui, Lam Thomas Ka Yam, Deng Lingli, Xie Chengyi, Xu Xiangnan, Wong Chris Kong Chu, Xu Jingjing, Fang Jiacheng, Wang Xiaoxiao, Xiong Zhuang, Luo Shangyi, Wang Jianing, Dong Jiyang, Cai Zongwei
Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou, 350108, China.
State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, SAR, 999077, China.
Adv Sci (Weinh). 2025 Feb;12(8):e2410840. doi: 10.1002/advs.202410840. Epub 2025 Jan 7.
Mass spectrometry imaging (MSI) provides valuable insights into metabolic heterogeneity by capturing in situ molecular profiles within organisms. One challenge of MSI heterogeneity analysis is performing an objective segmentation to differentiate the biological tissue into distinct regions with unique characteristics. However, current methods struggle due to the insufficient incorporation of biological context and high computational demand. To address these challenges, a novel deep learning-based approach is proposed, GraphMSI, which integrates metabolic profiles with spatial information to enhance MSI data analysis. Our comparative results demonstrate GraphMSI outperforms commonly used segmentation methods in both visual inspection and quantitative evaluation. Moreover, GraphMSI can incorporate partial or coarse biological contexts to improve segmentation results and enable more effective three-dimensional MSI segmentation with reduced computational requirements. These are facilitated by two optional enhanced modes: scribble-interactive and knowledge-transfer. Numerous results demonstrate the robustness of these two modes, ensuring that GraphMSI consistently retains its capability to identify biologically relevant sub-regions in complex practical applications. It is anticipated that GraphMSI will become a powerful tool for spatial heterogeneity analysis in MSI data.
质谱成像(MSI)通过捕获生物体内的原位分子图谱,为代谢异质性提供了有价值的见解。MSI异质性分析的一个挑战是进行客观分割,以将生物组织区分为具有独特特征的不同区域。然而,由于生物背景信息整合不足以及计算需求高,当前方法面临困难。为应对这些挑战,提出了一种基于深度学习的新方法GraphMSI,它将代谢图谱与空间信息相结合,以增强MSI数据分析。我们的对比结果表明,在视觉检查和定量评估方面,GraphMSI均优于常用的分割方法。此外,GraphMSI可以纳入部分或粗略的生物背景信息,以改善分割结果,并在降低计算需求的情况下实现更有效的三维MSI分割。这通过两种可选的增强模式实现:涂鸦交互模式和知识转移模式。大量结果证明了这两种模式的稳健性,确保GraphMSI在复杂的实际应用中始终保持识别生物学相关子区域的能力。预计GraphMSI将成为MSI数据空间异质性分析的强大工具。