Suppr超能文献

人工智能辅助下的巴雷特食管发育异常的光学活检

Optical Biopsy of Dysplasia in Barrett's Oesophagus Assisted by Artificial Intelligence.

作者信息

van der Laan Jouke J H, van der Putten Joost A, Zhao Xiaojuan, Karrenbeld Arend, Peters Frans T M, Westerhof Jessie, de With Peter H N, van der Sommen Fons, Nagengast Wouter B

机构信息

Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.

Department of Electrical Engineering, Video Coding and Architectures, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands.

出版信息

Cancers (Basel). 2023 Mar 24;15(7):1950. doi: 10.3390/cancers15071950.

Abstract

Optical biopsy in Barrett's oesophagus (BE) using endocytoscopy (EC) could optimize endoscopic screening. However, the identification of dysplasia is challenging due to the complex interpretation of the highly detailed images. Therefore, we assessed whether using artificial intelligence (AI) as second assessor could help gastroenterologists in interpreting endocytoscopic BE images. First, we prospectively videotaped 52 BE patients with EC. Then we trained and tested the AI pm distinct datasets drawn from 83,277 frames, developed an endocytoscopic BE classification system, and designed online training and testing modules. We invited two successive cohorts for these online modules: 10 endoscopists to validate the classification system and 12 gastroenterologists to evaluate AI as second assessor by providing six of them with the option to request AI assistance. Training the endoscopists in the classification system established an improved sensitivity of 90.0% (+32.67%, < 0.001) and an accuracy of 77.67% (+13.0%, = 0.020) compared with the baseline. However, these values deteriorated at follow-up (-16.67%, < 0.001 and -8.0%, = 0.009). Contrastingly, AI-assisted gastroenterologists maintained high sensitivity and accuracy at follow-up, subsequently outperforming the unassisted gastroenterologists (+20.0%, = 0.025 and +12.22%, = 0.05). Thus, best diagnostic scores for the identification of dysplasia emerged through human-machine collaboration between trained gastroenterologists with AI as the second assessor. Therefore, AI could support clinical implementation of optical biopsies through EC.

摘要

使用内镜下细胞内镜检查(EC)对巴雷特食管(BE)进行光学活检可优化内镜筛查。然而,由于对高度详细图像的复杂解读,异型增生的识别具有挑战性。因此,我们评估了使用人工智能(AI)作为第二评估者是否有助于胃肠病学家解读细胞内镜下的BE图像。首先,我们前瞻性地对52例BE患者进行了EC录像。然后,我们在从83277帧中提取的不同数据集中对AI进行训练和测试,开发了一种细胞内镜下BE分类系统,并设计了在线训练和测试模块。我们邀请了两个连续的队列参与这些在线模块:10名内镜医师验证分类系统,12名胃肠病学家通过为其中6人提供请求AI协助的选项来评估AI作为第二评估者。与基线相比,在内镜医师中对分类系统进行培训后,敏感性提高到90.0%(+32.67%,P<0.001),准确性提高到77.67%(+13.0%,P=0.020)。然而,这些值在随访时有所下降(-16.67%,P<0.001和-8.0%,P=0.009)。相比之下,AI辅助的胃肠病学家在随访时保持了较高的敏感性和准确性,随后表现优于未辅助的胃肠病学家(+20.0%,P=0.025和+12.22%,P=0.05)。因此,通过以AI作为第二评估者的训练有素的胃肠病学家之间的人机协作,出现了用于识别异型增生的最佳诊断分数。因此,AI可以支持通过EC进行光学活检的临床应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验