Suppr超能文献

通过体外药物反应建模进行抗去势治疗前列腺癌的计算药物发现。

Computational drug discovery for castration-resistant prostate cancers through in vitro drug response modeling.

机构信息

Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455.

The Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455.

出版信息

Proc Natl Acad Sci U S A. 2023 Apr 25;120(17):e2218522120. doi: 10.1073/pnas.2218522120. Epub 2023 Apr 17.

Abstract

Prostate cancer (PC) is the most frequently diagnosed malignancy and a leading cause of cancer deaths in US men. Many PC cases metastasize and develop resistance to systemic hormonal therapy, a stage known as castration-resistant prostate cancer (CRPC). Therefore, there is an urgent need to develop effective therapeutic strategies for CRPC. Traditional drug discovery pipelines require significant time and capital input, which highlights a need for novel methods to evaluate the repositioning potential of existing drugs. Here, we present a computational framework to predict drug sensitivities of clinical CRPC tumors to various existing compounds and identify treatment options with high potential for clinical impact. We applied this method to a CRPC patient cohort and nominated drugs to combat resistance to hormonal therapies including abiraterone and enzalutamide. The utility of this method was demonstrated by nomination of multiple drugs that are currently undergoing clinical trials for CRPC. Additionally, this method identified the tetracycline derivative COL-3, for which we validated higher efficacy in an isogenic cell line model of enzalutamide-resistant vs. enzalutamide-sensitive CRPC. In enzalutamide-resistant CRPC cells, COL-3 displayed higher activity for inhibiting cell growth and migration, and for inducing G1-phase cell cycle arrest and apoptosis. Collectively, these findings demonstrate the utility of a computational framework for independent validation of drugs being tested in CRPC clinical trials, and for nominating drugs with enhanced biological activity in models of enzalutamide-resistant CRPC. The efficiency of this method relative to traditional drug development approaches indicates a high potential for accelerating drug development for CRPC.

摘要

前列腺癌(PC)是美国男性中最常见的恶性肿瘤,也是癌症死亡的主要原因。许多 PC 病例发生转移并对全身性激素治疗产生耐药性,这一阶段被称为去势抵抗性前列腺癌(CRPC)。因此,迫切需要开发针对 CRPC 的有效治疗策略。传统的药物发现管道需要大量的时间和资金投入,这凸显了需要新的方法来评估现有药物的重新定位潜力。在这里,我们提出了一种计算框架,用于预测临床 CRPC 肿瘤对各种现有化合物的药物敏感性,并确定具有高临床影响潜力的治疗选择。我们将这种方法应用于 CRPC 患者队列,并提名了一些药物来对抗包括阿比特龙和恩扎鲁胺在内的激素治疗耐药性。该方法通过提名目前正在进行 CRPC 临床试验的多种药物来验证其效用。此外,该方法还鉴定了四环素衍生物 COL-3,我们在恩扎鲁胺耐药性与恩扎鲁胺敏感性 CRPC 的同源细胞系模型中验证了其更高的疗效。在恩扎鲁胺耐药性 CRPC 细胞中,COL-3 对抑制细胞生长和迁移以及诱导 G1 期细胞周期停滞和凋亡具有更高的活性。总之,这些发现证明了计算框架用于独立验证正在 CRPC 临床试验中测试的药物以及提名在恩扎鲁胺耐药性 CRPC 模型中具有增强生物学活性的药物的效用。与传统药物开发方法相比,该方法的效率表明,在 CRPC 药物开发方面具有很高的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8f4/10151558/1f84bb23bcfd/pnas.2218522120fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验