State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China.
Nat Commun. 2023 Apr 18;14(1):2211. doi: 10.1038/s41467-023-37999-4.
Elevating the charging cut-off voltage is one of the efficient approaches to boost the energy density of Li-ion batteries (LIBs). However, this method is limited by the occurrence of severe parasitic reactions at the electrolyte/electrode interfaces. Herein, to address this issue, we design a non-flammable fluorinated sulfonate electrolyte by multifunctional solvent molecule design, which enables the formation of an inorganic-rich cathode electrolyte interphase (CEI) on high-voltage cathodes and a hybrid organic/inorganic solid electrolyte interphase (SEI) on the graphite anode. The electrolyte, consisting of 1.9 M LiFSI in a 1:2 v/v mixture of 2,2,2-trifluoroethyl trifluoromethanesulfonate and 2,2,2-trifluoroethyl methanesulfonate, endows 4.55 V-charged graphite||LiCoO and 4.6 V-charged graphite||NCM811 batteries with capacity retentions of 89% over 5329 cycles and 85% over 2002 cycles, respectively, thus resulting in energy density increases of 33% and 16% compared to those charged to 4.3 V. This work demonstrates a practical strategy for upgrading the commercial LIBs.
提高充电截止电压是提高锂离子电池(LIB)能量密度的有效方法之一。然而,这种方法受到电解质/电极界面上严重的寄生反应的限制。在此,我们通过多功能溶剂分子设计设计了一种不易燃的氟化磺酸盐电解质,该电解质可在高压阴极上形成富无机相的阴极电解质界面(CEI),在石墨阳极上形成有机/无机混合固体电解质界面(SEI)。该电解质由 1.9 M LiFSI 和 2,2,2-三氟乙基三氟甲磺酸酯和 2,2,2-三氟乙基甲磺酸酯以 1:2 v/v 的比例混合而成,为 4.55 V 充电的石墨||LiCoO 和 4.6 V 充电的石墨||NCM811 电池提供了超过 5329 次循环和超过 2002 次循环的 89%和 85%的容量保持率,与充电至 4.3 V 的电池相比,能量密度分别提高了 33%和 16%。这项工作展示了一种实用的升级商业 LIBs 的策略。