Ma Baochen, Zhang Haikuo, Li Ruhong, Zhang Shuoqing, Chen Long, Zhou Tao, Wang Jinze, Zhang Ruixin, Ding Shouhong, Xiao Xuezhang, Deng Tao, Chen Lixin, Fan Xiulin
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China.
Polytechnic Institute, Zhejiang University, Hangzhou, China.
Nat Chem. 2024 Sep;16(9):1427-1435. doi: 10.1038/s41557-024-01585-y. Epub 2024 Jul 15.
Ideal rechargeable lithium battery electrolytes should promote the Faradaic reaction near the electrode surface while mitigating undesired side reactions. Yet, conventional electrolytes usually show sluggish kinetics and severe degradation due to their high desolvation energy and poor compatibility. Here we propose an electrolyte design strategy that overcomes the limitations associated with Li salt dissociation in non-coordinating solvents to enable fast, stable Li chemistries. The non-coordinating solvents are activated through favourable hydrogen bond interactions, specifically F-H or H-O, when blended with fluorinated benzenes or halide alkane compounds. These intermolecular interactions enable a dynamic Li-solvent coordination process, thereby promoting the fast Li reaction kinetics and suppressing electrode side reactions. Utilizing this molecular-docking electrolyte design strategy, we have developed 25 electrolytes that demonstrate high Li plating/stripping Coulombic efficiencies and promising capacity retentions in both full cells and pouch cells. This work supports the use of the molecular-docking solvation mechanism for designing electrolytes with fast Li kinetics for high-voltage Li batteries.
理想的可充电锂电池电解质应促进电极表面附近的法拉第反应,同时减轻不希望发生的副反应。然而,传统电解质由于其高去溶剂化能和较差的兼容性,通常表现出缓慢的动力学和严重的降解。在此,我们提出一种电解质设计策略,该策略克服了与非配位溶剂中锂盐解离相关的限制,以实现快速、稳定的锂化学性质。当与氟化苯或卤代烷烃化合物混合时,非配位溶剂通过有利的氢键相互作用(特别是F-H或H-O)被激活。这些分子间相互作用实现了动态的锂-溶剂配位过程,从而促进快速的锂反应动力学并抑制电极副反应。利用这种分子对接电解质设计策略,我们开发了25种电解质,这些电解质在全电池和软包电池中均表现出高的锂电镀/剥离库仑效率和良好的容量保持率。这项工作支持使用分子对接溶剂化机制来设计具有快速锂动力学的电解质,用于高压锂电池。