Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, 10044 Stockholm, Sweden.
Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & SENS Research Center, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany.
ACS Nano. 2023 May 9;17(9):8041-8052. doi: 10.1021/acsnano.2c09501. Epub 2023 Apr 19.
The performance of two-dimensional (2D) materials is promising for electronic, photonic, and sensing devices since they possess large surface-to-volume ratios, high mechanical strength, and broadband light sensitivity. While significant advances have been made in synthesizing and transferring 2D materials onto different substrates, there is still the need for scalable patterning of 2D materials with nanoscale precision. Conventional lithography methods require protective layers such as resist or metals that can contaminate or degrade the 2D materials and deteriorate the final device performance. Current resist-free patterning methods are limited in throughput and typically require custom-made equipment. To address these limitations, we demonstrate the noncontact and resist-free patterning of platinum diselenide (PtSe), molybdenum disulfide (MoS), and graphene layers with nanoscale precision at high processing speed while preserving the integrity of the surrounding material. We use a commercial, off-the-shelf two-photon 3D printer to directly write patterns in the 2D materials with features down to 100 nm at a maximum writing speed of 50 mm/s. We successfully remove a continuous film of 2D material from a 200 μm × 200 μm substrate area in less than 3 s. Since two-photon 3D printers are becoming increasingly available in research laboratories and industrial facilities, we expect this method to enable fast prototyping of devices based on 2D materials across various research areas.
二维(2D)材料因其具有较大的表面积与体积比、较高的机械强度和较宽的光灵敏度,在电子、光子和传感设备中具有广阔的应用前景。虽然在将 2D 材料合成并转移到不同基底上已经取得了重大进展,但仍需要以纳米级精度对 2D 材料进行可扩展的图案化处理。传统的光刻方法需要使用抗蚀剂或金属等保护层,这可能会污染或降解 2D 材料,并恶化最终器件的性能。目前的无抗蚀剂图案化方法在吞吐量方面存在限制,且通常需要定制设备。为了解决这些限制,我们展示了使用商业现货的双光子 3D 打印机以非接触且无需抗蚀剂的方式对铂硒化(PtSe)、二硫化钼(MoS)和石墨烯层进行纳米级精度的图案化处理,同时保持周围材料的完整性。我们以 50 毫米/秒的最大写入速度,将特征尺寸低至 100nm 的图案直接写入 2D 材料中。我们成功地在不到 3 秒的时间内从 200μm×200μm 的基底区域中去除了连续的 2D 材料薄膜。由于双光子 3D 打印机在研究实验室和工业设施中越来越普及,我们预计这种方法将能够在各个研究领域中快速原型化基于 2D 材料的器件。