Suppr超能文献

多中心整合影像组学、结构化报告和机器学习算法用于肺部计算机断层扫描中新型冠状病毒肺炎的辅助分类

Multi-center Integrating Radiomics, Structured Reports, and Machine Learning Algorithms for Assisted Classification of COVID-19 in Lung Computed Tomography.

作者信息

Machado Marcos A D, Silva Ronnyldo R E, Namias Mauro, Lessa Andreia S, Neves Margarida C L C, Silva Carolina T A, Oliveira Danillo M, Reina Thamiris R, Lira Arquimedes A B, Almeida Leandro M, Zanchettin Cleber, Netto Eduardo M

机构信息

Department of Radiology, Complexo Hospitalar Universitário Prof. Edgard Santos/ Ebserh, Universidade Federal da Bahia, Salvador, Bahia 40110-040 Brazil.

Radtec Serviços em Física Médica, Salvador, Bahia 40060-330 Brazil.

出版信息

J Med Biol Eng. 2023;43(2):156-162. doi: 10.1007/s40846-023-00781-4. Epub 2023 Mar 7.

Abstract

PURPOSE

To evaluate the classification performance of structured report features, radiomics, and machine learning (ML) models to differentiate between Coronavirus Disease 2019 (COVID-19) and other types of pneumonia using chest computed tomography (CT) scans.

METHODS

Sixty-four COVID-19 subjects and 64 subjects with non-COVID-19 pneumonia were selected. The data was split into two independent cohorts: one for the structured report, radiomic feature selection and model building ( = 73), and another for model validation ( = 55). Physicians performed readings with and without machine learning support. The model's sensitivity and specificity were calculated, and inter-rater reliability was assessed using Cohen's Kappa agreement coefficient.

RESULTS

Physicians performed with mean sensitivity and specificity of 83.4 and 64.3%, respectively. When assisted with machine learning, the mean sensitivity and specificity increased to 87.1 and 91.1%, respectively. In addition, machine learning improved the inter-rater reliability from moderate to substantial.

CONCLUSION

Integrating structured reports and radiomics promises assisted classification of COVID-19 in CT chest scans.

摘要

目的

利用胸部计算机断层扫描(CT)评估结构化报告特征、放射组学和机器学习(ML)模型区分2019冠状病毒病(COVID-19)与其他类型肺炎的分类性能。

方法

选取64例COVID-19患者和64例非COVID-19肺炎患者。数据被分为两个独立队列:一个用于结构化报告、放射组学特征选择和模型构建(n = 73),另一个用于模型验证(n = 55)。医生在有和没有机器学习支持的情况下进行阅片。计算模型的敏感性和特异性,并使用Cohen's Kappa一致性系数评估评分者间的可靠性。

结果

医生的平均敏感性和特异性分别为83.4%和64.3%。在机器学习辅助下,平均敏感性和特异性分别提高到87.1%和91.1%。此外,机器学习将评分者间的可靠性从中度提高到高度。

结论

整合结构化报告和放射组学有望在胸部CT扫描中辅助COVID-19的分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd52/9990550/a30ebe91d46f/40846_2023_781_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验