Suppr超能文献

一种基于深度学习的新型 CT 图像去噪和融合网络用于疾病(COVID-19)筛查。

A novel CT image de-noising and fusion based deep learning network to screen for disease (COVID-19).

机构信息

Multimedia Information Processing Lab, Department of Information and Communication Engineering, Chosun University, Gwangju, South Korea.

Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.

出版信息

Sci Rep. 2023 Apr 23;13(1):6601. doi: 10.1038/s41598-023-33614-0.

Abstract

A COVID-19, caused by SARS-CoV-2, has been declared a global pandemic by WHO. It first appeared in China at the end of 2019 and quickly spread throughout the world. During the third layer, it became more critical. COVID-19 spread is extremely difficult to control, and a huge number of suspected cases must be screened for a cure as soon as possible. COVID-19 laboratory testing takes time and can result in significant false negatives. To combat COVID-19, reliable, accurate and fast methods are urgently needed. The commonly used Reverse Transcription Polymerase Chain Reaction has a low sensitivity of approximately 60% to 70%, and sometimes even produces negative results. Computer Tomography (CT) has been observed to be a subtle approach to detecting COVID-19, and it may be the best screening method. The scanned image's quality, which is impacted by motion-induced Poisson or Impulse noise, is vital. In order to improve the quality of the acquired image for post segmentation, a novel Impulse and Poisson noise reduction method employing boundary division max/min intensities elimination along with an adaptive window size mechanism is proposed. In the second phase, a number of CNN techniques are explored for detecting COVID-19 from CT images and an Assessment Fusion Based model is proposed to predict the result. The AFM combines the results for cutting-edge CNN architectures and generates a final prediction based on choices. The empirical results demonstrate that our proposed method performs extensively and is extremely useful in actual diagnostic situations.

摘要

一种由严重急性呼吸系统综合征冠状病毒 2 型(SARS-CoV-2)引起的 COVID-19 已被世界卫生组织宣布为全球大流行。它于 2019 年底在中国首次出现,并迅速蔓延至全球。在第三阶段,情况变得更加危急。COVID-19 的传播极难控制,必须对大量疑似病例进行筛选,以尽快找到治疗方法。COVID-19 的实验室检测需要时间,并且可能会导致大量的假阴性结果。为了对抗 COVID-19,迫切需要可靠、准确和快速的方法。常用的逆转录聚合酶链反应(RT-PCR)的灵敏度约为 60%至 70%,有时甚至会产生阴性结果。计算机断层扫描(CT)已被观察到是一种检测 COVID-19 的微妙方法,它可能是最好的筛选方法。扫描图像的质量受到运动诱导的泊松或脉冲噪声的影响,这一点至关重要。为了提高分割后的图像质量,提出了一种新的脉冲和泊松噪声减少方法,该方法采用边界划分最大/最小强度消除以及自适应窗口大小机制。在第二阶段,探索了几种从 CT 图像中检测 COVID-19 的卷积神经网络(CNN)技术,并提出了一种基于评估融合的模型来预测结果。AFM 结合了前沿 CNN 架构的结果,并根据选择生成最终预测。实验结果表明,我们提出的方法具有广泛的适用性,在实际诊断情况下非常有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66da/10123059/f1dfc1dcf5a2/41598_2023_33614_Fig1_HTML.jpg

相似文献

2
Deep Learning Algorithm for COVID-19 Classification Using Chest X-Ray Images.
Comput Math Methods Med. 2021 Nov 9;2021:9269173. doi: 10.1155/2021/9269173. eCollection 2021.
3
A deep learning algorithm using CT images to screen for Corona virus disease (COVID-19).
Eur Radiol. 2021 Aug;31(8):6096-6104. doi: 10.1007/s00330-021-07715-1. Epub 2021 Feb 24.
4
Diagnosis of COVID-19 using CT scan images and deep learning techniques.
Emerg Radiol. 2021 Jun;28(3):497-505. doi: 10.1007/s10140-020-01886-y. Epub 2021 Feb 1.
5
CNN-RNN Network Integration for the Diagnosis of COVID-19 Using Chest X-ray and CT Images.
Sensors (Basel). 2023 Jan 25;23(3):1356. doi: 10.3390/s23031356.
6
Computed tomography-based COVID-19 triage through a deep neural network using mask-weighted global average pooling.
Front Cell Infect Microbiol. 2023 Mar 3;13:1116285. doi: 10.3389/fcimb.2023.1116285. eCollection 2023.
7
A Deep Learning Model for Diagnosing COVID-19 and Pneumonia through X-ray.
Curr Med Imaging. 2023;19(4):333-346. doi: 10.2174/1573405618666220610093740.
8
COVID-19 detection in CT and CXR images using deep learning models.
Biogerontology. 2022 Feb;23(1):65-84. doi: 10.1007/s10522-021-09946-7. Epub 2022 Jan 22.
10
Thoracic imaging tests for the diagnosis of COVID-19.
Cochrane Database Syst Rev. 2020 Sep 30;9:CD013639. doi: 10.1002/14651858.CD013639.pub2.

引用本文的文献

1
A hybrid optimization approach for accelerated multimodal medical image fusion.
PLoS One. 2025 Jul 10;20(7):e0324973. doi: 10.1371/journal.pone.0324973. eCollection 2025.
2
A Joint Classification Method for COVID-19 Lesions Based on Deep Learning and Radiomics.
Tomography. 2024 Sep 5;10(9):1488-1500. doi: 10.3390/tomography10090109.
3
COVID-19 infection segmentation using hybrid deep learning and image processing techniques.
Sci Rep. 2023 Dec 20;13(1):22737. doi: 10.1038/s41598-023-49337-1.
4
COVID-19 infection analysis framework using novel boosted CNNs and radiological images.
Sci Rep. 2023 Dec 9;13(1):21837. doi: 10.1038/s41598-023-49218-7.

本文引用的文献

2
An Efficient Deep Learning Model to Detect COVID-19 Using Chest X-ray Images.
Int J Environ Res Public Health. 2022 Feb 11;19(4):2013. doi: 10.3390/ijerph19042013.
3
Detection and analysis of COVID-19 in medical images using deep learning techniques.
Sci Rep. 2021 Oct 4;11(1):19638. doi: 10.1038/s41598-021-99015-3.
4
Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks.
Pattern Anal Appl. 2021;24(3):1207-1220. doi: 10.1007/s10044-021-00984-y. Epub 2021 May 9.
5
Deep Learning Enables Accurate Diagnosis of Novel Coronavirus (COVID-19) With CT Images.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2775-2780. doi: 10.1109/TCBB.2021.3065361. Epub 2021 Dec 8.
6
A deep learning algorithm using CT images to screen for Corona virus disease (COVID-19).
Eur Radiol. 2021 Aug;31(8):6096-6104. doi: 10.1007/s00330-021-07715-1. Epub 2021 Feb 24.
8
A Weakly-Supervised Framework for COVID-19 Classification and Lesion Localization From Chest CT.
IEEE Trans Med Imaging. 2020 Aug;39(8):2615-2625. doi: 10.1109/TMI.2020.2995965.
9
Early diagnosis of COVID-19-affected patients based on X-ray and computed tomography images using deep learning algorithm.
Soft comput. 2023;27(5):2635-2643. doi: 10.1007/s00500-020-05275-y. Epub 2020 Aug 28.
10
A Deep Learning System to Screen Novel Coronavirus Disease 2019 Pneumonia.
Engineering (Beijing). 2020 Oct;6(10):1122-1129. doi: 10.1016/j.eng.2020.04.010. Epub 2020 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验