Suppr超能文献

基于监督学习的 HEp-2 图像自动免疫荧光模式分类框架。

An automatic immunofluorescence pattern classification framework for HEp-2 image based on supervised learning.

机构信息

CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, P. R. China.

Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.

出版信息

Brief Bioinform. 2023 May 19;24(3). doi: 10.1093/bib/bbad144.

Abstract

Immunofluorescence patterns of anti-nuclear antibodies (ANAs) on human epithelial cell (HEp-2) substrates are important biomarkers for the diagnosis of autoimmune diseases. There are growing clinical requirements for an automatic readout and classification of ANA immunofluorescence patterns for HEp-2 images following the taxonomy recommended by the International Consensus on Antinuclear Antibody Patterns (ICAP). In this study, a comprehensive collection of HEp-2 specimen images covering a broad range of ANA patterns was established and manually annotated by experienced laboratory experts. By utilizing a supervised learning methodology, an automatic immunofluorescence pattern classification framework for HEp-2 specimen images was developed. The framework consists of a module for HEp-2 cell detection and cell-level feature extraction, followed by an image-level classifier that is capable of recognizing all 14 classes of ANA immunofluorescence patterns as recommended by ICAP. Performance analysis indicated an accuracy of 92.05% on the validation dataset and 87% on an independent test dataset, which has surpassed the performance of human examiners on the same test dataset. The proposed framework is expected to contribute to the automatic ANA pattern recognition in clinical laboratories to facilitate efficient and precise diagnosis of autoimmune diseases.

摘要

抗核抗体(ANA)在人上皮细胞(HEp-2)底物上的免疫荧光模式是自身免疫性疾病诊断的重要生物标志物。随着国际抗核抗体图谱共识(ICAP)所推荐的分类法在 HEp-2 图像中的应用,临床对 ANA 免疫荧光模式的自动读取和分类的需求日益增长。在这项研究中,我们建立了一个全面的涵盖广泛 ANA 模式的 HEp-2 标本图像集,并由经验丰富的实验室专家进行手动注释。通过利用监督学习方法,我们开发了一种用于 HEp-2 标本图像的自动免疫荧光模式分类框架。该框架包括一个用于 HEp-2 细胞检测和细胞级特征提取的模块,以及一个能够识别 ICAP 推荐的所有 14 种 ANA 免疫荧光模式的图像级分类器。性能分析表明,在验证数据集上的准确率为 92.05%,在独立测试数据集上的准确率为 87%,超过了人类检验员在同一测试数据集上的表现。该框架有望为临床实验室中的自动 ANA 模式识别做出贡献,从而促进自身免疫性疾病的高效和精确诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验