Salvati Zachary M, Rahm Alanna Kulchak, Williams Marc S, Ladd Ilene, Schlieder Victoria, Atondo Jamie, Schneider Jennifer L, Epstein Mara M, Lu Christine Y, Pawloski Pamala A, Sharaf Ravi N, Liang Su-Ying, Burnett-Hartman Andrea N, Hunter Jessica Ezzell, Burton-Akright Jasmine, Cragun Deborah
Geisinger Department of Genomic Health, 100 N. Academy Ave, Danville, PA, 17822, USA.
Center for Health Research, Kaiser Permanente Northwest, 3800 N. Interstate Ave, Portland, OR, 97202, USA.
Implement Sci Commun. 2023 Apr 25;4(1):43. doi: 10.1186/s43058-023-00424-4.
Identifying key determinants is crucial for improving program implementation and achieving long-term sustainment within healthcare organizations. Organizational-level complexity and heterogeneity across multiple stakeholders can complicate our understanding of program implementation. We describe two data visualization methods used to operationalize implementation success and to consolidate and select implementation factors for further analysis.
We used a combination of process mapping and matrix heat mapping to systematically synthesize and visualize qualitative data from 66 stakeholder interviews across nine healthcare organizations, to characterize universal tumor screening programs of all newly diagnosed colorectal and endometrial cancers and understand the influence of contextual factors on implementation. We constructed visual representations of protocols to compare processes and score process optimization components. We also used color-coded matrices to systematically code, summarize, and consolidate contextual data using factors from the Consolidated Framework for Implementation Research (CFIR). Combined scores were visualized in a final data matrix heat map.
Nineteen process maps were created to visually represent each protocol. Process maps identified the following gaps and inefficiencies: inconsistent execution of the protocol, no routine reflex testing, inconsistent referrals after a positive screen, no evidence of data tracking, and a lack of quality assurance measures. These barriers in patient care helped us define five process optimization components and used these to quantify program optimization on a scale from 0 (no program) to 5 (optimized), representing the degree to which a program is implemented and optimally maintained. Combined scores within the final data matrix heat map revealed patterns of contextual factors across optimized programs, non-optimized programs, and organizations with no program.
Process mapping provided an efficient method to visually compare processes including patient flow, provider interactions, and process gaps and inefficiencies across sites, thereby measuring implementation success via optimization scores. Matrix heat mapping proved useful for data visualization and consolidation, resulting in a summary matrix for cross-site comparisons and selection of relevant CFIR factors. Combining these tools enabled a systematic and transparent approach to understanding complex organizational heterogeneity prior to formal coincidence analysis, introducing a stepwise approach to data consolidation and factor selection.
识别关键决定因素对于改善项目实施以及在医疗保健组织内实现长期可持续性至关重要。多个利益相关者之间的组织层面的复杂性和异质性会使我们对项目实施的理解变得复杂。我们描述了两种数据可视化方法,用于将实施成功进行操作化,并整合和选择实施因素以进行进一步分析。
我们结合使用流程映射和矩阵热图,系统地综合并可视化来自九个医疗保健组织的66次利益相关者访谈的定性数据,以描述所有新诊断的结直肠癌和子宫内膜癌的通用肿瘤筛查项目,并了解背景因素对实施的影响。我们构建了协议的可视化表示,以比较流程并对流程优化组件进行评分。我们还使用颜色编码矩阵,利用实施研究综合框架(CFIR)中的因素对背景数据进行系统编码、总结和整合。综合得分在最终的数据矩阵热图中可视化。
创建了19个流程映射以直观地表示每个协议。流程映射识别出以下差距和低效率情况:协议执行不一致、无常规反射测试、筛查呈阳性后转诊不一致、无数据跟踪证据以及缺乏质量保证措施。这些患者护理方面的障碍帮助我们定义了五个流程优化组件,并使用这些组件在从0(无项目)到5(优化)的范围内对项目优化进行量化,代表项目实施和最佳维持的程度。最终数据矩阵热图中的综合得分揭示了优化项目、未优化项目和无项目组织之间的背景因素模式。
流程映射提供了一种有效的方法来直观地比较流程,包括患者流程、提供者互动以及各地点之间的流程差距和低效率情况,从而通过优化得分来衡量实施成功。矩阵热图被证明对数据可视化和整合很有用,产生了一个用于跨站点比较和选择相关CFIR因素的总结矩阵。在正式的一致性分析之前,结合使用这些工具能够采用系统且透明的方法来理解复杂的组织异质性,引入了一种逐步的数据整合和因素选择方法。