Suppr超能文献

DGH-GO:利用基因本体论解析复杂疾病的遗传异质性。

DGH-GO: dissecting the genetic heterogeneity of complex diseases using gene ontology.

机构信息

Biomedical Data Science Lab, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan.

LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.

出版信息

BMC Bioinformatics. 2023 Apr 26;24(1):171. doi: 10.1186/s12859-023-05290-4.

Abstract

BACKGROUND

Complex diseases such as neurodevelopmental disorders (NDDs) exhibit multiple etiologies. The multi-etiological nature of complex-diseases emerges from distinct but functionally similar group of genes. Different diseases sharing genes of such groups show related clinical outcomes that further restrict our understanding of disease mechanisms, thus, limiting the applications of personalized medicine approaches to complex genetic disorders.

RESULTS

Here, we present an interactive and user-friendly application, called DGH-GO. DGH-GO allows biologists to dissect the genetic heterogeneity of complex diseases by stratifying the putative disease-causing genes into clusters that may contribute to distinct disease outcome development. It can also be used to study the shared etiology of complex-diseases. DGH-GO creates a semantic similarity matrix for the input genes by using Gene Ontology (GO). The resultant matrix can be visualized in 2D plots using different dimension reduction methods (T-SNE, Principal component analysis, umap and Principal coordinate analysis). In the next step, clusters of functionally similar genes are identified from genes functional similarities assessed through GO. This is achieved by employing four different clustering methods (K-means, Hierarchical, Fuzzy and PAM). The user may change the clustering parameters and explore their effect on stratification immediately. DGH-GO was applied to genes disrupted by rare genetic variants in Autism Spectrum Disorder (ASD) patients. The analysis confirmed the multi-etiological nature of ASD by identifying four clusters of genes that were enriched for distinct biological mechanisms and clinical outcome. In the second case study, the analysis of genes shared by different NDDs showed that genes causing multiple disorders tend to aggregate in similar clusters, indicating a possible shared etiology.

CONCLUSION

DGH-GO is a user-friendly application that allows biologists to study the multi-etiological nature of complex diseases by dissecting their genetic heterogeneity. In summary, functional similarities, dimension reduction and clustering methods, coupled with interactive visualization and control over analysis allows biologists to explore and analyze their datasets without requiring expert knowledge on these methods. The source code of proposed application is available at https://github.com/Muh-Asif/DGH-GO.

摘要

背景

神经发育障碍(NDD)等复杂疾病具有多种病因。复杂疾病的多病因性质源于具有不同但功能相似的基因群。具有此类基因群的不同疾病表现出相关的临床结果,这进一步限制了我们对疾病机制的理解,从而限制了个性化医疗方法在复杂遗传疾病中的应用。

结果

在这里,我们提出了一个交互和用户友好的应用程序,称为 DGH-GO。DGH-GO 通过将假定的致病基因分层为可能导致不同疾病结果发展的聚类,允许生物学家剖析复杂疾病的遗传异质性。它还可用于研究复杂疾病的共同病因。DGH-GO 通过使用基因本体论(GO)为输入基因创建语义相似性矩阵。通过使用不同的降维方法(T-SNE、主成分分析、umap 和主坐标分析),可以在 2D 图中可视化生成的矩阵。在下一步中,通过评估基因的 GO 功能相似性,从基因功能相似性中识别出功能相似的基因聚类。这是通过使用四种不同的聚类方法(K-means、层次、模糊和 PAM)来实现的。用户可以更改聚类参数并立即探索其对分层的影响。DGH-GO 应用于由自闭症谱系障碍(ASD)患者的罕见遗传变异破坏的基因。分析通过识别四个基因聚类来证实 ASD 的多病因性质,这些聚类富含不同的生物学机制和临床结果。在第二个案例研究中,对不同 NDD 共享的基因进行分析表明,引起多种疾病的基因往往聚集在相似的聚类中,表明可能存在共同的病因。

结论

DGH-GO 是一个用户友好的应用程序,允许生物学家通过剖析其遗传异质性来研究复杂疾病的多病因性质。总之,功能相似性、降维和聚类方法,以及交互式可视化和对分析的控制,使生物学家无需具备这些方法的专业知识即可探索和分析他们的数据集。该应用程序的源代码可在 https://github.com/Muh-Asif/DGH-GO 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517f/10134522/5183ca4becda/12859_2023_5290_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验