Suppr超能文献

通过脑机接口区分学习规则

Distinguishing Learning Rules with Brain Machine Interfaces.

作者信息

Portes Jacob P, Schmid Christian, Murray James M

机构信息

Center for Theoretical Neuroscience, Columbia University.

Institute of Neuroscience, University of Oregon.

出版信息

Adv Neural Inf Process Syst. 2022 Dec;35:25937-25950.

Abstract

Despite extensive theoretical work on biologically plausible learning rules, clear evidence about whether and how such rules are implemented in the brain has been difficult to obtain. We consider biologically plausible supervised- and reinforcement-learning rules and ask whether changes in network activity during learning can be used to determine which learning rule is being used. Supervised learning requires a credit-assignment model estimating the mapping from neural activity to behavior, and, in a biological organism, this model will inevitably be an imperfect approximation of the ideal mapping, leading to a bias in the direction of the weight updates relative to the true gradient. Reinforcement learning, on the other hand, requires no credit-assignment model and tends to make weight updates following the true gradient direction. We derive a metric to distinguish between learning rules by observing changes in the network activity during learning, given that the mapping from brain to behavior is known by the experimenter. Because brain-machine interface (BMI) experiments allow for precise knowledge of this mapping, we model a cursor-control BMI task using recurrent neural networks, showing that learning rules can be distinguished in simulated experiments using only observations that a neuroscience experimenter would plausibly have access to.

摘要

尽管在具有生物学合理性的学习规则方面已经开展了大量理论研究工作,但关于此类规则是否以及如何在大脑中得以实现的明确证据却一直难以获得。我们考虑具有生物学合理性的监督学习和强化学习规则,并探究学习过程中网络活动的变化是否可用于确定正在使用的是哪种学习规则。监督学习需要一个信用分配模型来估计从神经活动到行为的映射,而在生物有机体中,该模型不可避免地是理想映射的不完美近似,从而导致相对于真实梯度的权重更新方向出现偏差。另一方面,强化学习不需要信用分配模型,并且倾向于沿着真实梯度方向进行权重更新。鉴于实验者已知从大脑到行为的映射,我们通过观察学习过程中网络活动的变化来推导一种区分学习规则的度量。由于脑机接口(BMI)实验能够精确了解这种映射,我们使用循环神经网络对光标控制BMI任务进行建模,结果表明,在模拟实验中,仅使用神经科学实验者可能获取的观察结果就能区分学习规则。

相似文献

8

本文引用的文献

2
How learning unfolds in the brain: toward an optimization view.学习在大脑中是如何展开的:走向优化的观点。
Neuron. 2021 Dec 1;109(23):3720-3735. doi: 10.1016/j.neuron.2021.09.005. Epub 2021 Oct 13.
3
Neural manifold under plasticity in a goal driven learning behaviour.在目标驱动的学习行为中,神经流形下的可塑性。
PLoS Comput Biol. 2021 Feb 5;17(2):e1008621. doi: 10.1371/journal.pcbi.1008621. eCollection 2021 Feb.
4
Backpropagation and the brain.反向传播与大脑。
Nat Rev Neurosci. 2020 Jun;21(6):335-346. doi: 10.1038/s41583-020-0277-3. Epub 2020 Apr 17.
6
A deep learning framework for neuroscience.深度学习在神经科学中的应用框架。
Nat Neurosci. 2019 Nov;22(11):1761-1770. doi: 10.1038/s41593-019-0520-2. Epub 2019 Oct 28.
7
New neural activity patterns emerge with long-term learning.新的神经活动模式随着长期学习而出现。
Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):15210-15215. doi: 10.1073/pnas.1820296116. Epub 2019 Jun 10.
9
Deep Learning With Asymmetric Connections and Hebbian Updates.具有非对称连接和赫布更新的深度学习
Front Comput Neurosci. 2019 Apr 4;13:18. doi: 10.3389/fncom.2019.00018. eCollection 2019.
10
Motor Learning.运动学习。
Compr Physiol. 2019 Mar 14;9(2):613-663. doi: 10.1002/cphy.c170043.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验