Suppr超能文献

使用机器学习方法评估伽马通过率预测中的数据集质量。

Evaluation of the dataset quality in gamma passing rate predictions using machine learning methods.

机构信息

Faculty of Science and Engineering, University of Hull, Hull, United Kingdom.

Medical Physics Service, Castle Hill Hospital, Hull University Teaching Hospitals NHS Trust, Castle Road, Hull, United Kingdom.

出版信息

Br J Radiol. 2023 Jul;96(1147):20220302. doi: 10.1259/bjr.20220302. Epub 2023 May 2.

Abstract

OBJECTIVE

Gamma passing rate (GPR) predictions using machine learning methods have been explored for treatment verification of radiotherapy plans. However, these methods presented datasets with unbalanced number of plans having different treatment conditions (heterogeneous datasets), such as anatomical sites or dose per fractions, leading to lower model interpretability and prediction performance.

METHODS

We investigated the impact of the dataset composition on GPR binary classification (pass/fail) using random forest (RF), XG-boost, and neural network (NN) models. 945 plans were used to create one reference dataset (randomly assembled) and 24 customized datasets that considered four heterogeneity factors independently (anatomical region, number of arcs, dose per fraction, and treatment unit). 309 predictor features were extracted and calculated from plan parameters, modulation complexity metrics, and radiomic analysis (leave-trajectory maps, 3D dose distributions, and portal dosimetry images). The models' performances were measured using the area under the curve from the receiver operating characteristic (ROC-AUC).

RESULTS

Radiomics features for reference models increased ROC-AUC values up to 13%, 15%, and 5% for RF, XG-Boost, and NN, respectively. The datasets with higher heterogeneous conditions presented the lower ROC-AUC values (RF: 0.72 ± 0.11, XG-Boost: 0.67 ± 0.1, NN: 0.89 ± 0.05) compared to models with less heterogeneous treatment conditions (RF: 0.88 ± 0.06, XG-Boost: 0.89 ± 0.07, NN: 0.98 ± 0.01). The ten most important features for each heterogeneity dataset group demonstrated their correlation with the treatments' physical aspects and GPR prediction.

CONCLUSION

Improvements in data generalization and model performances can be associated with datasets having similar treatment conditions. This analysis might be implemented to evaluate the dataset quality and model consistency of further ML applications in radiotherapy.

ADVANCES IN KNOWLEDGE

Dataset heterogeneities decrease ML model performance and reliability.

摘要

目的

使用机器学习方法预测伽马通过率(GPR)已被探索用于放疗计划的治疗验证。然而,这些方法呈现出数据集的计划数量不平衡,具有不同的治疗条件(异构数据集),例如解剖部位或剂量分割,导致模型可解释性和预测性能降低。

方法

我们使用随机森林(RF)、XG-boost 和神经网络(NN)模型研究了数据集组成对 GPR 二分类(通过/失败)的影响。使用 945 个计划创建一个参考数据集(随机组装)和 24 个定制数据集,这些数据集独立考虑了四个异质因素(解剖区域、弧数、剂量分割和治疗单位)。从计划参数、调制复杂度指标和放射组学分析(离开轨迹图、3D 剂量分布和门户剂量图像)中提取和计算了 309 个预测特征。使用来自接收器操作特征(ROC)的曲线下面积(AUC)测量模型性能。

结果

参考模型的放射组学特征使 ROC-AUC 值分别增加了 13%、15%和 5%,用于 RF、XG-Boost 和 NN。具有较高异质条件的数据集呈现出较低的 ROC-AUC 值(RF:0.72 ± 0.11、XG-Boost:0.67 ± 0.1、NN:0.89 ± 0.05),与具有较少异质治疗条件的模型相比(RF:0.88 ± 0.06、XG-Boost:0.89 ± 0.07、NN:0.98 ± 0.01)。每个异质数据集组的十个最重要特征表明它们与治疗的物理方面和 GPR 预测相关。

结论

数据泛化和模型性能的提高可以与具有相似治疗条件的数据集相关联。这种分析可以用于评估进一步的 ML 在放射治疗中的应用的数据集质量和模型一致性。

知识进步

数据集的异质性降低了 ML 模型的性能和可靠性。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验