Suppr超能文献

基于每日千伏计算机断层扫描图像的自适应放疗个体化自动勾画。

Patient-Specific Auto-segmentation on Daily kVCT Images for Adaptive Radiation Therapy.

机构信息

Department of Radiation Oncology, Stanford University, Stanford, California.

Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, China.

出版信息

Int J Radiat Oncol Biol Phys. 2023 Oct 1;117(2):505-514. doi: 10.1016/j.ijrobp.2023.04.026. Epub 2023 May 2.

Abstract

PURPOSE

This study explored deep-learning-based patient-specific auto-segmentation using transfer learning on daily RefleXion kilovoltage computed tomography (kVCT) images to facilitate adaptive radiation therapy, based on data from the first group of patients treated with the innovative RefleXion system.

METHODS AND MATERIALS

For head and neck (HaN) and pelvic cancers, a deep convolutional segmentation network was initially trained on a population data set that contained 67 and 56 patient cases, respectively. Then the pretrained population network was adapted to the specific RefleXion patient by fine-tuning the network weights with a transfer learning method. For each of the 6 collected RefleXion HaN cases and 4 pelvic cases, initial planning computed tomography (CT) scans and 5 to 26 sets of daily kVCT images were used for the patient-specific learning and evaluation separately. The performance of the patient-specific network was compared with the population network and the clinical rigid registration method and evaluated by the Dice similarity coefficient (DSC) with manual contours being the reference. The corresponding dosimetric effects resulting from different auto-segmentation and registration methods were also investigated.

RESULTS

The proposed patient-specific network achieved mean DSC results of 0.88 for 3 HaN organs at risk (OARs) of interest and 0.90 for 8 pelvic target and OARs, outperforming the population network (0.70 and 0.63) and the registration method (0.72 and 0.72). The DSC of the patient-specific network gradually increased with the increment of longitudinal training cases and approached saturation with more than 6 training cases. Compared with using the registration contour, the target and OAR mean doses and dose-volume histograms obtained using the patient-specific auto-segmentation were closer to the results using the manual contour.

CONCLUSIONS

Auto-segmentation of RefleXion kVCT images based on the patient-specific transfer learning could achieve higher accuracy, outperforming a common population network and clinical registration-based method. This approach shows promise in improving dose evaluation accuracy in RefleXion adaptive radiation therapy.

摘要

目的

本研究探索了基于转移学习的基于深度学习的个体化自动分割,利用创新的 RefleXion 系统治疗的第一批患者的数据,对日常反射千伏 CT(kVCT)图像进行自适应放射治疗。

方法和材料

对于头颈部(HaN)和骨盆癌症,最初在包含 67 个和 56 个患者病例的人群数据集上训练一个深度卷积分割网络。然后,通过使用转移学习方法微调网络权重,将预先训练好的人群网络适应于特定的 RefleXion 患者。对于收集的 6 个 RefleXion HaN 病例和 4 个骨盆病例中的每一个,初始计划 CT 扫描和 5 到 26 套每日 kVCT 图像分别用于患者特定的学习和评估。将患者特定网络的性能与人群网络和临床刚性配准方法进行比较,并通过与手动轮廓作为参考的 Dice 相似系数(DSC)进行评估。还研究了不同的自动分割和配准方法所产生的相应剂量学效果。

结果

所提出的患者特定网络对于 3 个 HaN 感兴趣的器官(OAR)获得了 0.88 的平均 DSC 结果,对于 8 个骨盆靶区和 OAR 获得了 0.90 的平均 DSC 结果,优于人群网络(0.70 和 0.63)和配准方法(0.72 和 0.72)。患者特定网络的 DSC 随着纵向训练病例的增加而逐渐增加,并且随着超过 6 个训练病例的增加而接近饱和。与使用注册轮廓相比,使用患者特定的自动分割获得的靶区和 OAR 的平均剂量和剂量体积直方图更接近使用手动轮廓的结果。

结论

基于患者特定的转移学习的 RefleXion kVCT 图像的自动分割可以达到更高的准确性,优于通用的人群网络和临床基于配准的方法。这种方法有望提高 RefleXion 自适应放射治疗中的剂量评估准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验