Opt Express. 2023 May 8;31(10):16709-16718. doi: 10.1364/OE.486754.
Optical sectioning structured illumination microscopy (OS-SIM) provides optical sectioning capability in wide-field microscopy. The required illumination patterns have traditionally been generated using spatial light modulators (SLM), laser interference patterns, or digital micromirror devices (DMDs) which are too complex to implement in miniscope systems. MicroLEDs have emerged as an alternative light source for patterned illumination due to their extreme brightness capability and small emitter sizes. This paper presents a directly addressable striped microLED microdisplay with 100 rows on a flexible cable (70 cm long) for use as an OS-SIM light source in a benchtop setup. The overall design of the microdisplay is described in detail with luminance-current-voltage characterization. OS-SIM implementation with a benchtop setup shows the optical sectioning capability of the system by imaging within a 500 µm thick fixed brain slice from a transgenic mouse where oligodendrocytes are labeled with a green fluorescent protein (GFP). Results show improved contrast in reconstructed optically sectioned images of 86.92% (OS-SIM) compared with 44.31% (pseudo-widefield). MicroLED based OS-SIM therefore offers a new capability for deep tissue widefield imaging.
光学切片结构照明显微镜(OS-SIM)在宽场显微镜中提供光学切片能力。传统上,所需的照明模式是使用空间光调制器(SLM)、激光干涉图案或数字微镜器件(DMD)生成的,这些模式对于微型显微镜系统来说过于复杂。由于微发光二极管(MicroLED)具有极高的亮度能力和较小的发射器尺寸,因此已成为用于图案化照明的替代光源。本文提出了一种带有 100 行的直接寻址条状 MicroLED 微显示器,其柔性电缆(70 厘米长)可用于台式设备中的 OS-SIM 光源。详细描述了微显示器的整体设计,并进行了亮度-电流-电压特性分析。使用台式设备进行 OS-SIM 实现,通过对来自转绿色荧光蛋白(GFP)标记的少突胶质细胞的转基因小鼠的 500 µm 厚固定脑切片进行成像,展示了系统的光学切片能力。结果表明,与伪宽场(44.31%)相比,重构的光学切片图像对比度提高了 86.92%(OS-SIM)。因此,基于 MicroLED 的 OS-SIM 为深层组织宽场成像提供了新的能力。