Suppr超能文献

仿生支持的脂质双层在导电聚合物表面上的简易生成用于膜生物传感。

Facile Generation of Biomimetic-Supported Lipid Bilayers on Conducting Polymer Surfaces for Membrane Biosensing.

机构信息

Robert F. Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14853 , United States.

Department of Chemical Engineering and Biotechnology , University of Cambridge , Cambridge CB3 0AS , U.K.

出版信息

ACS Appl Mater Interfaces. 2019 Nov 27;11(47):43799-43810. doi: 10.1021/acsami.9b10303. Epub 2019 Nov 12.

Abstract

Membrane biosensors that can rapidly sense pathogen interaction and disrupting agents are needed to identify and screen new drugs to combat antibiotic resistance. Bioelectronic devices have the capability to read out both ionic and electrical signals, but their compatibility with biological membranes is somewhat limited. Supported lipid bilayers (SLBs) have served as useful biomimetics for a myriad of research topics involving biological membranes. However, SLBs are traditionally made on inert, rigid, inorganic surfaces. Here, we demonstrate a versatile and facile method for generating SLBs on a conducting polymer device using a solvent-assisted lipid bilayer (SALB) technique. We use this bioelectronic device to form both mammalian and bacterial membrane mimetics to sense the membrane interactions with a bacterial toxin (α-hemolysin) and an antibiotic compound (polymyxin B), respectively. Our results show that we can form high quality bilayers of both types and sense these particular interactions with them, discriminating between pore formation, in the case of α-hemolysin, and disruption of the bilayer, in the case of polymyxin B. The SALB formation method is compatible with many membrane compositions that will not form via common vesicle fusion methods and works well in microfluidic devices. This, combined with the massive parallelization possible for the fabrication of electronic devices, can lead to miniaturized multiplexed devices for rapid data acquisition necessary to identify antibiotic targets that specifically disrupt bacterial, but not mammalian membranes, or identify bacterial toxins that strongly interact with mammalian membranes.

摘要

需要能够快速感知病原体相互作用和破坏剂的膜生物传感器,以鉴定和筛选新的药物来对抗抗生素耐药性。生物电子设备具有读取离子和电信号的能力,但它们与生物膜的兼容性有些有限。支撑脂质双层 (SLB) 已成为涉及生物膜的众多研究课题的有用仿生物。然而,SLB 传统上是在惰性、刚性、无机表面上制造的。在这里,我们展示了一种在导电聚合物器件上使用溶剂辅助脂质双层 (SALB) 技术生成 SLB 的通用且简便的方法。我们使用这种生物电子设备分别形成哺乳动物和细菌膜模拟物,以分别感应细菌毒素 (α-溶血素) 和抗生素化合物 (多粘菌素 B) 与膜的相互作用。我们的结果表明,我们可以形成这两种类型的高质量双层,并感应它们的这些特定相互作用,区分孔形成(在 α-溶血素的情况下)和双层破坏(在多粘菌素 B 的情况下)。SALB 形成方法与许多不会通过常见的囊泡融合方法形成的膜成分兼容,并且在微流控设备中效果良好。结合电子设备制造的大规模并行化,这可以导致用于快速数据采集的小型化多路复用设备,这些数据采集对于鉴定专门破坏细菌但不破坏哺乳动物膜的抗生素靶标或鉴定与哺乳动物膜强烈相互作用的细菌毒素是必要的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验