Suppr超能文献

用于模拟人体血脑屏障和调节细胞转运的组织对组织屏障芯片的制造。

Manufactured tissue-to-tissue barrier chip for modeling the human blood-brain barrier and regulation of cellular trafficking.

机构信息

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.

出版信息

Lab Chip. 2023 Jun 28;23(13):2990-3001. doi: 10.1039/d3lc00124e.

Abstract

Microphysiological system or organ-on-a-chip technologies can replicate the key structure and function of 3D human tissues with higher reproducibility than less controllable 3D cell aggregate models, providing great potential to become advanced drug toxicity and efficacy test platforms alternative to animal models. However, these organ chip models remain to be manufactured and standardized in a highly reproducible manner for reliable drug screening and mechanism of action research. Herein, we present a manufactured form of 'micro-engineered physiological system-tissue barrier chip' called MEPS-TBC for the highly replicable modeling of the human blood-brain barrier (BBB) with a 3D perivascular space. The perivascular region was controlled by tunable aspiration, where human astrocytes reside in 3D, create a network, and communicate with human pericytes facing human vascular endothelial cells, thereby replicating the 3D BBB. The lower channel structure of MEPS-TBC was designed and optimized using a computational simulation to facilitate aspiration while maintaining multicellular construction. Our human BBB model of the 3D perivascular unit and the endothelium perfused by physiological shear stress secured significantly enhanced barrier function exhibiting greater TEER and lower permeability, compared to the only endothelial model, indicating that the cellular interactions between BBB cells significantly contribute to the BBB formation. Importantly, our BBB model showed the cellular barrier function for homeostatic trafficking regulation against inflammatory peripheral immune cells, as well as for molecular transport control across the BBB. We believe our manufactured chip technology will construct reliable and standardized organ-chip models for disease mechanism research and predictive drug screening.

摘要

微生理系统或器官芯片技术可以复制具有更高重现性的 3D 人体组织的关键结构和功能,比不可控的 3D 细胞聚集体模型更具潜力,成为替代动物模型的先进药物毒性和疗效测试平台。然而,这些器官芯片模型仍然需要以高度可重复的方式制造和标准化,以进行可靠的药物筛选和作用机制研究。在此,我们提出了一种称为 MEPS-TBC 的“微工程生理系统-组织屏障芯片”的制造形式,用于高度可重复地模拟具有 3D 血管周腔的血脑屏障 (BBB)。血管周区可通过可调式抽吸进行控制,其中人类星形胶质细胞存在于 3D 中,形成网络,并与面对人血管内皮细胞的人周细胞进行交流,从而复制 3D BBB。MEPS-TBC 的下部通道结构使用计算模拟进行了设计和优化,以促进抽吸,同时保持多细胞结构。与仅内皮模型相比,我们的 3D 血管周单元和受生理切变力灌注的人 BBB 模型的内皮屏障功能显著增强,表现为更高的 TEER 和更低的通透性,这表明 BBB 细胞之间的细胞相互作用对 BBB 的形成有重要贡献。重要的是,我们的 BBB 模型显示了针对炎症性外周免疫细胞的稳态转运调节以及跨 BBB 的分子转运控制的细胞屏障功能。我们相信,我们的制造芯片技术将构建可靠和标准化的器官芯片模型,用于疾病机制研究和预测性药物筛选。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验