Suppr超能文献

系统比较多组学生存模型揭示广泛缺乏抗噪性。

Systematic comparison of multi-omics survival models reveals a widespread lack of noise resistance.

机构信息

ETH Zurich, Department of Computer Science, Zurich, Switzerland.

University of Zurich, Department of Molecular Life Sciences, Zurich, Switzerland.

出版信息

Cell Rep Methods. 2023 Apr 24;3(4):100461. doi: 10.1016/j.crmeth.2023.100461.

Abstract

As observed in several previous studies, integrating more molecular modalities in multi-omics cancer survival models may not always improve model accuracy. In this study, we compared eight deep learning and four statistical integration techniques for survival prediction on 17 multi-omics datasets, examining model performance in terms of overall accuracy and noise resistance. We found that one deep learning method, mean late fusion, and two statistical methods, and , performed best in terms of both noise resistance and overall discriminative and calibration performance. Nevertheless, all methods struggled to adequately handle noise when too many modalities were added. In summary, we confirmed that current multi-omics survival methods are not sufficiently noise resistant. We recommend relying on only modalities for which there is known predictive value for a particular cancer type until models that have stronger noise-resistance properties are developed.

摘要

如在之前的几项研究中观察到的,在多组学生物癌症生存模型中整合更多分子模式并不总是能提高模型的准确性。在这项研究中,我们比较了 8 种深度学习和 4 种统计集成技术在 17 个多组学生物数据集上的生存预测,从整体准确性和抗噪性方面检查了模型性能。我们发现,在抗噪性和整体判别和校准性能方面,一种深度学习方法,即平均晚期融合,以及两种统计方法,和 ,表现最好。然而,当添加太多模式时,所有方法都难以充分处理噪声。总的来说,我们证实当前的多组学生物生存方法抗噪性不足。我们建议仅依赖于对于特定癌症类型具有已知预测价值的模式,直到开发出具有更强抗噪性的模型为止。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8154/10162996/2dc113fa3c07/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验