Huber Dominik, Costa Daniele, Felice Alex, Valkering Pieter, Coosemans Thierry, Messagie Maarten
Electric Vehicle and Energy Research Group (EVERGI), Mobility, Logistics and Automotive Technology Research Centre (MOBI), Department of Electrical Engineering and Energy Technology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
Electric Vehicle and Energy Research Group (EVERGI), Mobility, Logistics and Automotive Technology Research Centre (MOBI), Department of Electrical Engineering and Energy Technology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
Sci Total Environ. 2023 Aug 15;886:163882. doi: 10.1016/j.scitotenv.2023.163882. Epub 2023 May 7.
Decentralized energy systems enable a higher integration of electricity generation by renewable energy sources supported by electric storage and may significantly reduce greenhouse gas emissions for electricity generation. While the environmental impact of single technologies has received great attention in recent years, the environmental impacts of decentralized energy generation and storage technologies remain unaddressed. This study presents a cradle-to-grave life cycle assessment of those technologies in Belgium for 2030 and 2050. The system technologies comprise single-Si photovoltaic installations combined with lithium-ion and second-life batteries. To compile the life cycle inventory (LCI), energy balances are built based on a Belgian impact energy model. The flexibility of the energy system is introduced by different EV charging strategies and distinct modes of stationary battery storage with the Belgium electricity grid, represented by four different scenarios: i) low flexibility, ii) medium flexibility, iii) high flexibility, and iv) high flexibility with high prosumer potential (PPH). The midpoint impact categories climate change, land use, mineral resource scarcity and terrestrial ecotoxicity of ReCiPe life cycle impact assessment method are analyzed. The decentralized energy generation and storage technologies in Belgium in 2050 result in 64.51 gCOeq/kWh of consumed electricity for the medium flexibility scenario, representing a 72 % decrease compared to 2014. However, these reductions are driven by changes in the national electricity mix. Land use impacts are also reduced, up to 72 % for the high flexibility PPH scenario. In contrast, mineral resource scarcity and terrestrial ecotoxicity rise over time in the high flexibility PPH scenario in 2050 to 46 % and 66 %, respectively. A perturbation analysis is conducted to assess the sensitivity of the results, showing solar irradiation as the most sensitive parameter. One way to further reduce the environmental impacts of decentralized energy systems could be to investigate new strategies for the end-of-life of photovoltaic installations and batteries.
分散式能源系统能够在蓄电的支持下实现可再生能源发电的更高整合度,并可能显著减少发电过程中的温室气体排放。尽管近年来单一技术的环境影响受到了极大关注,但分散式能源发电和存储技术的环境影响仍未得到解决。本研究针对比利时2030年和2050年的这些技术进行了从摇篮到坟墓的生命周期评估。系统技术包括单晶硅光伏装置与锂离子电池和二次利用电池的组合。为了编制生命周期清单(LCI),基于比利时影响能源模型建立了能量平衡。能源系统的灵活性通过不同的电动汽车充电策略以及与比利时电网的不同固定电池存储模式来体现,由四种不同情景表示:i)低灵活性,ii)中等灵活性,iii)高灵活性,以及iv)具有高消费者潜力(PPH)的高灵活性。分析了ReCiPe生命周期影响评估方法的中点影响类别气候变化、土地利用、矿产资源稀缺和陆地生态毒性。2050年比利时的分散式能源发电和存储技术在中等灵活性情景下,每消耗1千瓦时电力产生64.51克二氧化碳当量,与2014年相比减少了72%。然而,这些减少是由国家电力结构的变化驱动的。土地利用影响也有所减少,在高灵活性PPH情景下最多减少72%。相比之下,在2050年的高灵活性PPH情景中,矿产资源稀缺和陆地生态毒性随时间分别上升至46%和66%。进行了扰动分析以评估结果的敏感性,结果表明太阳辐射是最敏感的参数。进一步降低分散式能源系统环境影响的一种方法可能是研究光伏装置和电池报废的新策略。