Guo Ying, Cai Yu-Han, Xu Tao, Song Xin-Yang, Guo Hong-Xia, Dong Min, Ni Dong, Li Hui, Wang Fang, Xue Wu-Feng
Department of Cardiology, Beijing Hospital, National Center for Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
Medical Ultrasound Image Computing (MUSIC) Laboratory, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China.
Front Bioeng Biotechnol. 2025 Jul 25;13:1556748. doi: 10.3389/fbioe.2025.1556748. eCollection 2025.
Echocardiography is a first-line noninvasive test for diagnosing coronary artery disease (CAD), but it depends on time-consuming visual assessments by experts.
This study constructed an echocardiographic video-driven multi-task learning model, denoted Intelligent echo for CAD (IE-CAD), to facilitate CAD screening and stenosis grading. A 3DdeeplabV3+ backbone and multi-task learning were simultaneously incorporated into the core frame of the IE-CAD model to capture the dynamic myocardial contours. Multifarious features reflecting local semantic structures were extracted and integrated to yield echocardiographic metrics such as ejection fraction, strain, and myocardial work. For model training and testing, we used a total of 870 echocardiographic videos from 290 patients with clinically suspected CAD at Beijing Hospital (Beijing, China), split at an 8:2 ratio. To evaluate the model's generalizability, we used an external dataset comprising 450 echocardiographic videos from 150 patients at Fuwai Hospital (Beijing, China).
The IE-CAD model achieved an AUC of 0.78 and a sensitivity of 0.85 for detecting significant or severe CAD, with a pearson correlation coefficient of 0.545 for predicting the Gensini score. When applied to the external dataset, the model achieved an AUC of 0.77 and a sensitivity of 0.78 for detecting significant or severe CAD.
Thus, the IE-CAD model demonstrated effective CAD diagnosis and grading in patients with clinical suspicion.
This work was registered at ClinicalTrials.gov on 05 April 2019 (registration number: NCT03905200).
超声心动图是诊断冠状动脉疾病(CAD)的一线非侵入性检查,但它依赖于专家耗时的视觉评估。
本研究构建了一个超声心动图视频驱动的多任务学习模型,称为CAD智能回声(IE-CAD),以促进CAD筛查和狭窄分级。将3DdeeplabV3+主干和多任务学习同时纳入IE-CAD模型的核心框架,以捕捉动态心肌轮廓。提取并整合反映局部语义结构的多种特征,以产生诸如射血分数、应变和心肌功等超声心动图指标。对于模型训练和测试,我们使用了来自北京医院(中国北京)290例临床疑似CAD患者的总共870个超声心动图视频,按8:2的比例划分。为了评估模型的通用性,我们使用了一个外部数据集,该数据集包括来自阜外医院(中国北京)150例患者的450个超声心动图视频。
IE-CAD模型检测显著或重度CAD的AUC为0.78,灵敏度为0.85,预测Gensini评分的皮尔逊相关系数为0.545。当应用于外部数据集时,该模型检测显著或重度CAD的AUC为0.77,灵敏度为0.78。
因此,IE-CAD模型在临床疑似患者中显示出有效的CAD诊断和分级能力。
这项工作于2019年4月5日在ClinicalTrials.gov上注册(注册号:NCT03905200)。