Küstner Thomas, Hepp Tobias, Fischer Marc, Schwartz Martin, Fritsche Andreas, Häring Hans-Ulrich, Nikolaou Konstantin, Bamberg Fabian, Yang Bin, Schick Fritz, Gatidis Sergios, Machann Jürgen
Department of Diagnostic and Interventional Radiology, Medical Image and Data Analysis, University Hospital Tübingen, Hoppe-Seyler-Str 3, 72076 Tübingen, Germany (T.K., T.H., M.F., K.N., S.G.); Department of Signal Processing and System Theory, University of Stuttgart, Stuttgart, Germany (T.K., M.F., M.S., B.Y.); School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, England (T.K.); Department of Empirical Inference, Max-Planck Institute for Intelligent Systems, Tübingen, Germany (T.H.); Department of Diagnostic and Interventional Radiology, Section of Experimental Radiology, University Hospital Tübingen, Tübingen, Germany (M.F., M.S., F.S., J.M.); Department of Internal Medicine IV, Eberhard Karls University, Tübingen, Germany (A.F.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München, University of Tübingen, Tübingen, Germany (A.F., F.S., J.M.); German Center for Diabetes Research (DZD), Tübingen, Germany (A.F., H.U.H., F.S., J.M.); and Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany (F.B.).
Radiol Artif Intell. 2020 Oct 28;2(6):e200010. doi: 10.1148/ryai.2020200010. eCollection 2020 Nov.
To enable fast and reliable assessment of subcutaneous and visceral adipose tissue compartments derived from whole-body MRI.
Quantification and localization of different adipose tissue compartments derived from whole-body MR images is of high interest in research concerning metabolic conditions. For correct identification and phenotyping of individuals at increased risk for metabolic diseases, a reliable automated segmentation of adipose tissue into subcutaneous and visceral adipose tissue is required. In this work, a three-dimensional (3D) densely connected convolutional neural network (DCNet) is proposed to provide robust and objective segmentation. In this retrospective study, 1000 cases (average age, 66 years ± 13 [standard deviation]; 523 women) from the Tuebingen Family Study database and the German Center for Diabetes research database and 300 cases (average age, 53 years ± 11; 152 women) from the German National Cohort (NAKO) database were collected for model training, validation, and testing, with transfer learning between the cohorts. These datasets included variable imaging sequences, imaging contrasts, receiver coil arrangements, scanners, and imaging field strengths. The proposed DCNet was compared to a similar 3D U-Net segmentation in terms of sensitivity, specificity, precision, accuracy, and Dice overlap.
Fast (range, 5-7 seconds) and reliable adipose tissue segmentation can be performed with high Dice overlap (0.94), sensitivity (96.6%), specificity (95.1%), precision (92.1%), and accuracy (98.4%) from 3D whole-body MRI datasets (field of view coverage, 450 × 450 × 2000 mm). Segmentation masks and adipose tissue profiles are automatically reported back to the referring physician.
Automated adipose tissue segmentation is feasible in 3D whole-body MRI datasets and is generalizable to different epidemiologic cohort studies with the proposed DCNet.© RSNA, 2020.
实现对源自全身MRI的皮下和内脏脂肪组织分区进行快速且可靠的评估。
在有关代谢状况的研究中,对源自全身MR图像的不同脂肪组织分区进行定量和定位具有很高的研究价值。为了正确识别代谢疾病风险增加的个体并对其进行表型分析,需要将脂肪组织可靠地自动分割为皮下和内脏脂肪组织。在这项研究中,提出了一种三维(3D)密集连接卷积神经网络(DCNet),以提供强大且客观的分割。在这项回顾性研究中,收集了来自图宾根家族研究数据库和德国糖尿病研究中心数据库的1000例病例(平均年龄66岁±13[标准差];523名女性)以及来自德国国民队列(NAKO)数据库的300例病例(平均年龄53岁±11;152名女性)用于模型训练、验证和测试,并在各队列之间进行迁移学习。这些数据集包括可变的成像序列、成像对比度、接收线圈布置、扫描仪和成像场强。将所提出的DCNet与类似的3D U-Net分割在灵敏度、特异性、精度、准确性和Dice重叠方面进行了比较。
利用3D全身MRI数据集(视野范围450×450×2000 mm),可以快速(5 - 7秒)且可靠地进行脂肪组织分割,Dice重叠率高(0.94),灵敏度(96.6%)、特异性(95.1%)、精度(92.1%)和准确性(9S.4%)。分割掩码和脂肪组织轮廓会自动报告给转诊医生。
利用所提出的DCNet,自动脂肪组织分割在3D全身MRI数据集中是可行的,并且可推广到不同的流行病学队列研究。© RSNA,2020。